UT: The Race to Stellar Formation

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

UT: The Race to Stellar Formation

Post by bystander » Wed Sep 01, 2010 9:40 pm

The Race to Stellar Formation
Universe Today | 01 Sep 2010
Racing is rarely the term that comes to mind when one considers astronomy. However, many events are a race to reach stability before a system flies apart or implodes. The formation of stars from gigantic interstellar clouds is just such a race in which stars struggle to form before the cloud is dispersed. Although a rough estimation of the requirements for collapse are discussed in introductory astrophysics classes (See: Jeans Mass Criterion) this formulation leaves out several elements that come into play in the real universe. Unfortunately for astronomers, these effects can be subtle but significant but untangling them is the subject of a recent paper uploaded to the arXiv preprint server.

The Jeans Mass Criterion only takes into consideration a gas cloud in isolation. Whether or not it will collapse will depend on whether or not the density is sufficiently high. But as we know, stars don't form in isolation; They form in stellar nurseries which form hundreds to thousands of stars. These forming stars contract under self gravity, and in doing so, heat up. This increases the local pressure and slows contraction as well as giving off additional radiation that also effects the cloud at large. Similarly, solar winds (particles streaming from the surface of formed stars) and supernovae can also disrupt further formation. These feedback mechanisms are the target of a new study by a group of astronomers led by Laura Lopez from the University of California Santa Cruz.
...
This research is some of the first to observationally explore, on a large scale, many of the mechanisms that have been proposed by theorists in the past. Although such research may seem inconsequential, these feedback mechanisms will have large effects on the distribution of distribution of stellar masses (known as the Initial Mass Function). This distribution determines which the relative amounts of massive stars which help to create heavy elements and drive the chemical evolution of galaxies as a whole.
What Drives the Expansion of Giant HII Regions?:
A Study of Stellar Feedback in 30 Doradus
- LA Lopez et al

Post Reply