Caltech: Magnetar Mysteries in our Galaxy and Beyond

Find out the latest thinking about our universe.
User avatar
Apathetic Retiree
Posts: 17907
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Caltech: Magnetar Mysteries in our Galaxy and Beyond

Post by bystander » Thu Jan 10, 2019 7:40 pm

Magnetar Mysteries in our Galaxy and Beyond
California Institute of Technology | 2019 Jan 09

New research looks at possible links between magnetars and extragalactic radio bursts

In a new Caltech-led study, researchers from campus and the Jet Propulsion Laboratory (JPL) have analyzed pulses of radio waves coming from a magnetar—a rotating, dense, dead star with a strong magnetic field—that is located near the supermassive black hole at the heart of the Milky Way galaxy. The new research provides clues that magnetars like this one, lying in close proximity to a black hole, could perhaps be linked to the source of "fast radio bursts," or FRBs. FRBs are high-energy blasts that originate beyond our galaxy but whose exact nature is unknown. ...

The research team ... looked at the magnetar named PSR J1745-2900, located in the Milky Way's galactic center, using the largest of NASA's Deep Space Network radio dishes in Australia. PSR J1745-2900 was initially spotted by NASA's Swift X-ray telescope, and later determined to be a magnetar by NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), in 2013. ...

Magnetars are a rare subtype of a group of objects called pulsars; pulsars, in turn, belong to a class of rotating dead stars known as neutron stars. Magnetars are thought to be young pulsars that spin more slowly than ordinary pulsars and have much stronger magnetic fields, which suggests that perhaps all pulsars go through a magnetar-like phase in their lifetime.

The magnetar PSR J1745-2900 is the closest-known pulsar to the supermassive black hole at the center of the galaxy, separated by a distance of only 0.3 light-year, and it is the only pulsar known to be gravitationally bound to the black hole and the environment around it.

In addition to discovering similarities between the galactic-center magnetar and FRBs, the researchers also gleaned new details about the magnetar's radio pulses. Using one of the Deep Space Network's largest radio antennas, the scientists were able to analyze individual pulses emitted by the star every time it rotated, a feat that is very rare in radio studies of pulsars. They found that some pulses were stretched, or broadened, by a larger amount than predicted when compared to previous measurements of the magnetar's average pulse behavior. Moreover, this behavior varied from pulse to pulse. ...

Pulse Morphology of the Galactic Center Magnetar PSR J1745-2900 ~ Aaron B. Pearlman et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
Vacationer at Tralfamadore
Posts: 15640
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Re: Caltech: Magnetar Mysteries in our Galaxy and Beyond

Post by neufer » Fri Jan 11, 2019 3:47 am wrote:
Magnetar Near Supermassive Black Hole Delivers Surprises
Janet Anderson, Chandra X-ray, May 13, 2015

<<In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA’s Chandra X-ray Observatory.

Magnetars are neutron stars that possess enormously powerful magnetic fields. At a distance that could be as small as 0.3 light years from the 4-million-solar mass black hole in the center of our Milky Way galaxy, the magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

Since its discovery two years ago when it gave off a burst of X-rays, astronomers have been actively monitoring the magnetar, dubbed SGR 1745-2900, with Chandra and the European Space Agency’s XMM-Newton. The main image of the graphic shows the region around the Milky Way’s black hole in X-rays from Chandra (red, green, and blue are the low, medium, and high-energy X-rays respectively). The inset contains Chandra’s close-up look at the area right around the black hole, showing a combined image obtained between 2005 and 2008 (left) when the magnetar was not detected, during a quiescent period, and an observation in 2013 (right) when it was caught as a bright point source during the X-ray outburst that led to its discovery.

A new study uses long-term monitoring observations to reveal that the amount of X-rays from SGR 1745-2900 is dropping more slowly than other previously observed magnetars, and its surface is hotter than expected.

The team first considered whether “starquakes” are able to explain this unusual behavior. When neutron stars, including magnetars, form, they can develop a tough crust on the outside of the condensed star. Occasionally, this outer crust will crack, similar to how the Earth’s surface can fracture during an earthquake. Although starquakes can explain the change in brightness and cooling seen in many magnetars, the authors found that this mechanism by itself was unable to explain the slow drop in X-ray brightness and the hot crustal temperature. Fading in X-ray brightness and surface cooling occur too quickly in the starquake model.

The researchers suggest that bombardment of the surface of the magnetar by charged particles trapped in twisted bundles of magnetic fields above the surface may provide the additional heating of the magnetar’s surface, and account for the slow decline in X-rays. These twisted bundles of magnetic fields can be generated when the neutron star forms.

The researchers do not think that the magnetar’s unusual behavior is caused by its proximity to a supermassive black hole, as the distance is still too great for strong interactions via magnetic fields or gravity.>>
Art Neuendorffer