SAO: Science Updates 2020

Find out the latest thinking about our universe.
User avatar
bystander
Apathetic Retiree
Posts: 19233
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

SAO: Science Updates 2020

Post by bystander » Mon Jan 06, 2020 8:04 pm

Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 19233
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Early Galaxies

Post by bystander » Mon Jan 06, 2020 8:14 pm

Early Galaxies
SAO Weekly Science Update | 2020 Jan 03
Galaxies that are very luminous in the infrared are generally active in making new stars whose ultraviolet radiation heats the dust. The energy, re-radiated by the dust at infrared wavelengths, is characterized by having a broad spectral shape with a distinct emission peak. As the universe expands, and as the observed spectra of galaxies shift to the red, light at the wavelength of this peak moves into the submillimeter band leaving the levels of observed infrared flux deficient. Star-forming galaxies in the very distant universe are thus fainter in the infrared than in the submillimeter.

Thousands of galaxies have been discovered dating from epochs only a few billion years after the big bang. Most of them are small, low-mass galaxies that are faint and relatively difficult to study. Although more luminous, massive star-forming galaxies should also be present, these large objects are difficult to assemble at early cosmic times and there are not as many of them. One type of such luminous early galaxy is called a dusty-star-forming galaxy. They contain so much obscuring dust that they are invisible at optical wavelengths, and (based on their luminosities) have star-formation rates exceeding a thousand solar-masses per year; for comparison, the Milky Way produces about one star per year.

Dusty star-forming galaxies in the earliest epochs, less than two billion years after the big bang, are particularly rare and hard to find, but they are extremely valuable in helping understand how the first galaxies develop. CfA astronomer Glen Petitpas was a member of a team of astronomers who used the SCUBA-2 camera (Submillimeter Common User Bolometer Array-2) and the far-infrared Herschel SPIRE instrument to discover and characterize a dusty star-forming galaxy. They serendipitously detected the unusual galaxy in a SCUBA-2 survey. When they realized that the object was not detected by Herschel - or by any other optical or infrared survey, suggesting that its infrared peak had moved very far to the red - they concluded that it likely was from an extremely early epoch.

The team then used the Submillimeter Array, with a spatial resolution about ten times finer than SCUBA-2, to confirm the detection and study the source. Since a firm distance measurement requires detecting a spectral line and measuring its redshift, the scientists also tried using other submillimeter facilities suitable for line searches, but without success. Nevertheless, from the flux limits at various wavelengths they were able to make a strong case that this object is a massive, dusty star-forming galaxy, among the first generation of massive galaxies in the universe and dating from between roughly seven hundred million and one billion years after the big bang.

A SCUBA-2 Selected Herschel-SPIRE Dropout and the Nature of this Population ~ J. Greenslade et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 19233
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

The Interiors of Stars

Post by bystander » Sat Jan 11, 2020 4:22 pm

The Interiors of Stars
SAO Weekly Science Update | 2020 Jan 10
The interiors of stars are largely mysterious regions because they are so difficult to observe directly. Our lack of understanding about the physical processes there, like rotation and the mixing of hot gas, introduces considerable ambiguity about how stars shine and how they evolve. Stellar oscillations, detected through brightness fluctuations, offer one way to probe these subsurface regions. In the Sun, these vibrations are due to pressure waves generated by turbulence in its upper layers (the layers dominated by convective gas motions). Helioseismology is the name given to the study of these oscillations in the Sun, and astroseismology is the term used for other stars.

Astronomers have long detected strong brightness variations in other stars, for example the class of Cepheid variable stars used to calibrate the cosmic distance scale, but the small, solar-like oscillations driven by convection near the star's surface are much harder to see. Over the past few decades, space telescopes have successfully applied astroseismology to solar-type stars spanning many stages of stellar life. CfA astronomer Dave Latham was a member of a large team of astronomers who used the new TESS (Transiting Exoplanet Survey Satellite) datasets to study the interiors of the class of intermediate mass stars known as δ Sct and γ Dor stars. These stars are more massive than the Sun but not large enough to burn through their hydrogen fuel very rapidly and die as supernovae. Pulsations generally arise principally from one of two processes, those dominated by pressure (where the gas pressure restores perturbations) or by gravity (where buoyancy does). In these intermediate-mass stars both of these processes can be important, with pulsations having typical periods of roughly about six hours. The complexity of the combined processes, among other things, results in these intermediate-mass stars coming in a veritable zoo of variability types, and this variety offers astronomers more ways to test models of stellar interiors.

The astronomers analyzed TESS data on 117 of these stars using observations taken every two minutes; accurate distances to the stars (and hence accurate luminosities) were obtained from Gaia satellite measurements. The team was able for the first time to test and successfully refine models of pulsation for these stars. They found, for example, that gas mixing in the outer envelope plays an important role. They also spotted many higher-frequency pulsators, thereby identifying promising targets for future studies. Not least, they showed that the TESS mission has unprecedented potential not just for studying exoplanets, but also for improving our understanding of intermediate mass stars.

The First View of δ Scuti and γ Doradus Stars with the TESS Mission ~ V. Antoci et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 19233
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

First Results from the Dark Energy Survey

Post by bystander » Fri Jan 17, 2020 5:14 pm

First Results from the Dark Energy Survey
SAO Weekly Science Update | 2020 Jan 17
The Dark Energy Survey (DES) program uses the patterns of cosmic structure as seen in the spatial distribution of hundreds of millions of galaxies to reveal the nature of "dark energy," the source of cosmic acceleration. Since it began in 2013, DES has mapped over ten percent of the sky with a digital camera containing 570 million pixels and five optical filters that provide galaxy colors to estimates redshift distances. CfA astronomers are part of a team of over 400 scientists in seven countries working on DES, and last year it released the first set of data.

Cosmic voids occupy most of the volume of the universe. Unlike clusters of galaxies and other dense structures which are strongly affected by gravitational effects, not to mention processes associated with galaxy formation, these voids are the most underdense regions of the universe and have relatively simple dynamics. This makes them particularly straightforward probes for constraining cosmological parameters.

CfA astronomer David James is a member of the DES Collaboration and one of the co-authors on a new paper analyzing the first data release, with the aim of describing the relationship between the mass and light around cosmic voids. The scientists use statistical modeling to analyze both the 2-D distribution of galaxies and their 3-D distribution, the latter obtained from calculating galaxy distances from their photometrically determined redshifts. They find the two methods agree well with each other, and with models in which the physics of void environments is very simple, and in which the amount of emitted light scales directly with the mass. Voids with diameters between about one hundred and six hundred million light-years fit well enough to enable tests of the mass-light relationship to better than ten percent. With future observations, the improved statistics should enable useful new consistency tests of gravity and General Relativity and dark-matter scenarios.

Dark Energy Survey Year 1 Results: The Relationship
between Mass and Light around Cosmic Voids
~ Y. Fang et al
viewtopic.php?p=273864#p273864
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor