SAO: Weekly Science Updates 2018

Find out the latest thinking about our universe.
User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

What Powers the Most Luminous Galaxies?

Post by bystander » Fri Jul 06, 2018 3:10 pm

What Powers the Most Luminous Galaxies?
SAO Weekly Science Update | 2018 Jul 06
Galaxy-galaxy interactions have long been known to influence galaxy evolution. They are commonplace events, and a large majority of galaxies show signs of interactions, including tidal tails or other morphological distortions. The most dramatic collisions trigger the galaxies to light up, especially in the infrared, and they are some of the most luminous objects in the sky. Their brightness allows them to be studied at cosmological distances, helping astronomers reconstruct activity in the early universe.

Two processes in particular are responsible for the enhanced radiation: bursts of star formation or the fueling of the supermassive black hole at a galaxy’s core (an active galactic nuclei - AGN). Although in principle these two processes are quite different and should be readily distinguishable (AGN, for example, produce much hotter ultraviolet and X-ray radiation), in practice the discriminating features can be faint and/or obscured by dust in the galaxies. Astronomers therefore often use the shape of the galaxy’s entire emission profile from the ultraviolet to the far infrared (its spectral energy distribution - SED), to diagnose what is going on. The dust that absorbs much of the radiation also re-radiates it at the longer infrared wavelengths and computer codes can model and unravel the numerous physical effects. ...

The astronomers find that the AGN contribution in their sample of galaxies reaches as high as ninety percent of the total luminosity; in other cases it falls below twenty percent and is possibly negligible. The team makes efforts to relate the magnitude of the AGN contribution to the merger stage of the system (from beginning to coalescing stages), but their modest sample size limited the generality of the conclusions. They are expanding their analysis to several hundred other mergers in order to strengthen the conclusions.

The AGN Luminosity Fraction in Merging Galaxies - Jeremy Dietrich et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Gravitational Microlens Detection from Spitzer

Post by bystander » Fri Jul 13, 2018 5:10 pm

Gravitational Microlens Detection from Spitzer
SAO Weekly Science Update | 2018 Jul 13
su201828.jpg
Hubble Space Telescope images of a microlens system. The image on the left was
taken 3.7 years after an observed microlensing event; the one on the right was taken
8.9 years later after the moving foreground (lensing) source had changed position.
The lens and source components (A and B) are clearly resolved in the later image.
(Image Credit: NASA/Hubble)

The path of light from a star as it passes by a massive body, like an exoplanet, will be bent and an observer looking towards the star will see its image distorted. Like an object seen through the stem of a wineglass, the stellar image could even be deformed into two bright peaks. That mass could influence light in this way was first confirmed in 1919, but some of the more subtle effects have only been detected in the past twenty-five years. In one such process, microlensing, a flash of light is produced when the path of a moving cosmic body (perhaps otherwise unknown) passes fortuitously in front of a star and briefly increases the intensity of its light.

The Spitzer Space Telescope circles the Sun in an Earth-trailing orbit, and it is currently 1.66 astronomical units away from Earth (one AU is the average distance of the Earth form the Sun). Scientists had predicted that if it ever became possible to observe a microlensing flash from two well-separated vantage points, a parallax measurement (the apparent angular difference between the positions of the star as seen from the two separated sites) would determine the distance of the dark object. In fact, since 2014 Spitzer has been used successfully to measure the parallax for hundreds of microlensing events. In all these cases, Spitzer was used after ground-based observations had first identified a microlensing event underway. ...

OGLE-2017-BLG-1130: The First Binary Gravitational Microlens Detected From Spitzer Only - Tianshu Wang et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

How Disc Galaxies Work

Post by bystander » Sat Jul 21, 2018 3:16 pm

How Disc Galaxies Work
SAO Weekly Science Update | 2018 Jul 20
Disc galaxies like our own Milky Way, characterized by a flattened disc of stars and gas (often with a central bulge of material as well) have a wide range of masses, spatial extents, and stellar content. Nonetheless all disc galaxies, both locally and in the distant Universe, share some strikingly similar properties. Most notable is that the star formation rate correlates tightly with the galaxy’s gas content, the gas motions (the "velocity dispersion"), and the dynamical lifetime (roughly, the time it takes for the galaxy to rotate once). Moreover, this curiously universal rate is remarkably small: only about one per cent of the gas in disc galaxies turns into stars over that timescale, with much of the activity concentrated in the galaxies’ central regions. Most simple models of star formation predict that gravity should be much more effective in forming stars as it compresses the gas in molecular clouds. Observations indicate that both the correlations and the inefficiency extend down to the scale of individual molecular clouds.

CfA astronomers Blakesley Burkhart and John Forbes and two colleagues have developed a new unified model for galaxy discs that explains these phenomena, and some others besides. The scientists show that the correlation of star formation rate with gas motion is not caused by these motions but rather is the result of the transport of material within the galaxy, which affects both. The model maintains a state of gas equilibrium and marginal gravitational stability by including in a galaxy the radial transport of gas towards its nucleus and also the turbulent feedback from star formation. These two considerations are relatively straightforward in principle but produce a dramatic improvement in the agreement between observations and theory, for example by explaining how the eventual quenching of the star formation happens. The new work also provides a natural explanation for the cosmic epochs at which galaxies build up bulges and discs.

A Unified Model for Galactic Discs: Star Formation, Turbulence Driving, and Mass Transport - Mark R. Krumholz et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Galaxies in the Early Universe

Post by bystander » Wed Aug 01, 2018 4:45 pm

Galaxies in the Early Universe
SAO Weekly Science Update | 2018 Jul 27
Image
The Spitzer infrared image of a distant luminous
infrared galaxy, overlaid with millimeter intensity
contours of the source from the Submillimeter
Array. Credit: NASA/Hill et al (MNRAS 2018)

Astronomers in the past decade have detected thousands of galaxies dating from epochs only a few billion years after the big bang. Many of them, discovered in deep optical and near-infrared surveys, are low-mass galaxies, and are faint and difficult to study. More luminous, massive star-forming galaxies should are present but these large objects are difficult to assemble so early in cosmic time and there are not as many of them. These star forming galaxies contain dust that absorbs stellar radiation and emits strongly at far infrared and submillimeter wavelengths; the Herschel Space Observatory surveys spotted about ten thousand candidate sources whose infrared colors suggested there were distant galaxies.

CfA astronomer Glen Petitpas was a member of a large team of astronomers who used the SCUBA-2 (Submillimeter Common User Bolometer Array) instrument to confirm 188 of the reddest of these sources as indeed being distant, dusty star formation galaxies, typically so far away that their light has been traveling towards us for over eleven billion years, and so bright that they must be making stars at a rate many thousands of times faster than does the Milky Way.

In a related paper, Petitpas was joined by CfA astronomers Mark Gurwell, Giovanni Fazio and David Wilner and their colleagues to use the Submillimeter Array to image some distant SCUBA-2 galaxies (although a set that is a bit closer than the above sample: their light has only been traveling for a bit over ten billion years). They targeted seventy galaxies with the SMA and detected sixty-two of them, including three pairs of galaxies that can be classified as colliding systems (the others may also include some mergers that are not spatially separable). The scientists show that the descendants of such huge galaxies in our local universe are probably massive elliptical galaxies, and that about ten percent of their stars probably formed in short bursts of activity in this earlier phase of their evolution.

High-Resolution SMA Imaging of Bright Submillimetre Sources from the SCUBA-2 Cosmology Legacy Survey - Ryley Hill et al Red, Redder, Reddest: SCUBA-2 Imaging of Colour-Selected Herschel Sources - S. Duivenvoorden et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Spitzer Infrared Observations of a Gravitational Wave Source

Post by bystander » Fri Aug 03, 2018 5:00 pm

Spitzer Infrared Observations of a Gravitational Wave Source
SAO Weekly Science Update | 2018 Aug 03
GW170817 is the name given to a gravitational wave signal seen by the LIGO and Virgo detectors on 17 August 2017. Lasting for about 100 seconds, the signal was produced by the merger of two neutron stars. The observation was then confirmed - the first time this has happened for gravitational waves - by observations with light waves: the preceding five detections of merging black holes did not have (and were not expected to have) any detectable electromagnetic signals. The light from the neutron star merger is produced by the radioactive decay of atomic nuclei created in the event. (Neutron star mergers do more than just produce optical light, by the way: they are also responsible for making most of the gold in the universe.) Numerous ground-based optical observations of the merger concluded that the decaying atomic nuclei fall into at least two groups, a rapidly evolving and fast moving one composed of elements less massive than Lanthanide Series elements, and one that is more slowly evolving and dominated by heavier elements.

Ten days after the merger, the continuum emission peaked at infrared wavelengths with a temperature of approximately 1300 kelvin, and continued to cool and dim. The Infrared Array Camera (IRAC) on the Spitzer Space Telescope observed the region around GW170817 for 3.9 hours in three epochs 43, 74 and 264 days after the event (SAO is the home of IRAC PI Fazio and his team). The shape and evolution of the emission reflect the physical processes at work, for example, the fraction of heavy elements in the ejecta or the possible role of carbon dust. Tracking the flux over time enables the astronomers to refine their models and understanding of what happens when neutron stars merge. ...

Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817 - V. A. Villar et al
viewtopic.php?t=37665
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Unraveling the Stellar Content of Young Clusters

Post by bystander » Thu Aug 16, 2018 2:55 pm

Unraveling the Stellar Content of Young Clusters
SAO Weekly Science Update | 2018 Aug 10
About twenty-five percent of young stars in our galaxy form in clustered environments, and stars in a cluster are often close enough to each other to affect the way they accrete gas and grow. Astronomers trying to understand the details of star formation, for example the relative abundance of massive stars to low mass ones, must take such complicated clustering effects into account. Measuring the actual demographics of a cluster is not easy either. Young stars are embedded within obscuring clouds of natal material. Infrared radiation can escape, however, and astronomers probe these regions at infrared wavelengths using the shape of the spectral energy distribution (the SED - the relative amounts of flux emitted at different wavelengths) to diagnose the nature of the young star: its mass, age, accretion activity, developing disk, and similar properties. One major complication is that the various telescopes and instruments used to measure an SED have large and different-sized beams that encompass multiple objects in a cluster. As a result, each point in an SED is a confused blend of emission from all the constituent stars, with the longest wavelength datapoints (from the largest beams) covering a spatial region perhaps ten times larger than the shortest wavelength points.

CfA astronomers Rafael Martinez-Galarz and Howard Smith and their two colleagues have developed a new statistical analysis technique to address the problem of confused SEDs in clustered environments. Using the highest spatial resolution images for each region, the team identifies the distinguishable stars (at least this many are in the cluster) and their emission at those wavelengths. They combine a Bayesian statistical approach with a large grid of modeled young stellar SEDs to determine the most probable continuation of each individual SED into the blended, longer-wavelength bands and thus leads to the determination of the most likely value of each star's mass, age, and environmental parameters. The resultant summed SED is not unique but is the most likely solution. ...

Unraveling the Spectral Energy Distributions of Clustered YSOs ~ Juan R. Martínez-Galarza et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

The TESS Input Catalog

Post by bystander » Fri Sep 07, 2018 4:56 pm

The TESS Input Catalog
SAO Weekly Science Update | 2018 Aug 31
The Transiting Exoplanet Survey Satellite (TESS), launched on April 18, has as its core mission goal to discover small transiting exoplanets orbiting nearby bright stars, and to do so it will conduct a nearly all-sky photometric survey over the next two years. For 27.4 days at a time TESS will look at one region of the sky while its 64-million-pixel camera reads out once every 30 minutes in an effort to spot the slight dips in starlight that signal the transit of a planet across the face of a distant star. (Several hundred thousand of the pixels will read out in a two minute cadence to probe more closely high value targets.) At the end of 27.4 days TESS will point to another region of the sky and repeat.

TESS, however, needs a source catalog of likely stars in order to know which stars in the field to observe. The highly successful exoplanet mission Kepler similarly had a stellar source catalog. The TESS Input Catalog (TIC) is used not only to select optimal targets, it also is designed to provide the properties of each of the stars, properties necessary for determining stellar radii (and hence planetary radii) and other key facts about the possible exoplanet system. Not least, every TESS pixel sees a relatively large area of the sky (twenty arcseconds on a side) in which multiple objects could fall, and the catalog therefore needs to target only luminous stars that are not known to vary. Finally, the catalog will be used for objects with which to test the system performance and look for any false positives. ...

The TESS Input Catalog and Candidate Target List ~ TESS Target Selection Working Group
viewtopic.php?t=31141
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Polaris, the North Star

Post by bystander » Fri Sep 07, 2018 5:07 pm

Polaris, the North Star
SAO Weekly Science Update | 2018 Sep 07
The North Star, Polaris, is a Cepheid variable: one whose mass, age and physical conditions generate periodic oscillations with a period proportional to the star's intrinsic luminosity. This extraordinarily useful property of Cepheid variables, discovered and calibrated at Harvard by Henrietta Leavitt starting in 1908, allows them to be used as cosmic distance calibrators. By comparing the intrinsic brightness as determined from the period (which is easily measured) with the measured brightness, the period-luminosity relationship, a precise distance can in principle be obtained. Cepheids in nearby galaxies that are receding from us provide the basis for the famous distance-velocity relationship of galaxies that underpins the expanding model of the universe (the "big bang" model). Cepheids are so important that they have also become benchmarks for testing our understanding of stellar evolution.

Polaris is not only famous as the beacon for early navigators, it is also the closest Cepheid to earth (445.5 light-years away), and a subject of intense study. It is a member of a triple system, and one source of confusion about its development has been the extent to which its companion stars could have affected its evolution. The star we can see by eye, Polaris Aa, has a close companion, Polaris Ab that orbits it in 29.59 years; a third star, Polaris B, orbits these two but is one hundred times farther away. Two more stars nearby, Polaris C and D, might also be faint companions. ...

The Orbit of the Close Companion of Polaris: Hubble Space Telescope Imaging, 2007 to 2014 ~ Nancy Remage Evans et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Chandra Detection of Diskless Young Stars

Post by bystander » Tue Sep 18, 2018 3:26 pm

Chandra Detection of Diskless Young Stars
SAO Weekly Science Update | 2018 Sep 14
Stars frequently form in crowded environments. By combining the resources of multi-wavelength missions like Chandra in the X-ray and Spitzer in the infrared, astronomers are able to resolve ambiguities and assemble a much more complete census of cluster content and the individual properties of the population. A case in point is the development of disks (possibly protoplanetary) around new stars. Disks form along with the new star and then evolve over a few million years before dissipating, perhaps leaving planets behind, and in clustered environments their development can be influenced by interactions with neighbors.

Stellar disks are warmed by their stars and were first spotted via the infrared emission from the warm dust. More evolved young stars without disks lack this characteristic infrared signature and thus can be identified as the the more evolved ones in a cluster. Young stars were also discovered to emit elevated levels of X-rays as compared to main-sequence stars because of their still-developing internal circulation. (In fact, young stars can have luminosities thousands of times brighter in X-rays than their older stellar counterparts.) In a crowded cluster environment, however, where other factors besides age are thought to be able to inhibit or disrupt the development of a disk, the X-ray emission offers an independent tool to identify those young stars without disks.

The Serpens South cluster of stars, estimated to be located about 900 light-years away in the direction of the constellation Serpens, is very young and its stars are heavily masked by the thick natal dust in their environment – indeed, it is thought to be among the youngest regions near us, making it an important test-bed for the study of disk evolution in clustered environments. ...

Chandra Detection of an Evolved Population of Young Stars in Serpens South ~ Elaine M. Winston et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

A New Classification Scheme for Exoplanet Sizes

Post by bystander » Sat Sep 22, 2018 3:08 pm

A New Classification Scheme for Exoplanet Sizes
SAO Weekly Science Update | 2018 Sep 21
There are about 4433 exoplanets in the latest catalogs. Their radii have generally been measured by knowing the radius of their host star and then closely fitting the lightcurves as the planet transits across the face of the star. The radius of the host star is thus a key parameter and latest data release of the Gaia mission has enabled astronomers to improve the accuracy of stellar properties in its catalog very significantly – to a precision in radius of about 8% - for nearly one hundred and eight thousand stars in the Kepler exoplanet fields.

CfA astronomer Dimitar Sasselov was part of a team with three colleagues to use the new stellar results to refine the radial measurements of 4268 exoplanets. The large dataset and refined values enable the scientists to confirm some previous hints about the distribution of exoplanet sizes, namely, that the size distribution is not exactly uniform but rather some exoplanet sizes are less common than might be expected. In particular, there is a paucity of planets with radii slightly larger than about two Earth-radii, and other slight decreases again at sizes of about four and about ten Earth-radii.

The astronomers use their new database to define a new classification scheme for exoplanets. The smallest category consists of planets smaller than four Earth-radii, and within this group are two subgroups: those smaller than two Earth-radii and those between about two and four Earth-radii. These small planets are generally gas poor. The second category has between four and ten Earth-radii, and the team proposes they be called "transitional planets" since they form a bridge between the small class and the large gas giants. There is a relative paucity of objects in this class for reasons that are not well understood.

The third new grouping contains the gas giant planets, those with sizes larger than about ten Earth-radii and which are dominated by hydrogen and helium; these include Jupiter analogs, and even brown dwarf stars. The authors conclude by observing that the group of two-to-four Earth-radii planets are the ones most likely to have water- rich cores ("water worlds"). They propose that their results will help refine the list of objects selected for observational follow-ups including potentially habitable worlds.

Survival Function Analysis of Planet Size Distribution with GAIA Data Release 2 Updates ~ Li Zeng et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Four Newly Discovered Milky Way Neighbors

Post by bystander » Fri Sep 28, 2018 3:35 pm

Four Newly Discovered Milky Way Neighbors
SAO Weekly Science Update | 2018 Sep 28
Ultra-faint, dwarf galaxies are the smallest, most dark matter dominated, and least chemically enriched stellar systems in the universe and are important targets for understanding dark matter and galaxy formation. They comprise by number the majority of galaxies in the universe. And not least, dwarf galaxies around the Milky Way provide crucial empirical input for verifying formation scenarios of our own galaxy. There are currently about sixty dwarf galaxies associated with the Milky Way and closer than about one million light-years; the Andromeda Galaxy, our closest large neighbor spiral galaxy, is two and one-half million light-years away.

Many new MW satellite galaxies have been discovered in the last few years, but some have been called into question by more sensitive imaging campaigns and most have only poorly constrained properties. CfA astronomer Nelson Caldwell was a member of a team that used the Magellan Clay telescope and the Megacam instrument to obtain images of four nearby dwarf galaxies probing nearly sixteen times fainter than previous measurements. The images reveal new stars and other objects, including extended structures, and enabled the astronomers to revise key parameters of these galaxies.

One of the dwarfs, Sagittarius II, with a gas mass of only 1300 solar-masses, is unusual in that it is small in size even for a dwarf galaxy and might instead be considered as the most extended globular cluster of stars for its brightness. Another, Reticulum II, is the most elongated dwarf galaxy known (nearly eight times longer than it is wide). A third, Tucana III, seems to be associated with a stream of material flowing into the MW and may be tidally disrupted. The sensitive new results were unable to measure any gas in any of the objects, but they set new limits, and will help astronomers make a more complete census of the Milky Way’s family of galaxies.

A Deeper Look at the New Milky Way Satellites: Sagittarius II,
Reticulum II, Phoenix II, and Tucana III
~ Burçin Mutlu-Pakdil et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Remarkable Flares from the Galactic Center

Post by bystander » Fri Oct 05, 2018 3:42 pm

Remarkable Flares from the Galactic Center
SAO Weekly Science Update | 2018 Oct 05
Sagittarius A* (Sgr A*), the supermassive black hole at the center of our Milky Way Galaxy, is 100 times closer to us than any other SMBH and therefore a prime candidate for studies of how matter radiates as it accretes onto black holes. SgrA* has been observed for decades and rapid fluctuations reported from X-ray to the near infrared wavelengths (intervening dust reduces optical light signals by a factor of over a trillion) and at submillimeter and radio wavelengths. Modeling the mechanisms of light variability is a direct challenge to our understanding of accretion onto SMBHs, but it is thought that correlations between flare timing at different wavelengths could reveal information about the spatial structure, for example if hotter material is located in a smaller zone closer to the black hole. One of the chief barriers to progress is the paucity of simultaneous multi-wavelength observations.

CfA astronomers Giovanni Fazio, Joe Hora, Steve Willner, Matt Ashby, Mark Gurwell and Howard Smith and a team of colleagues carried out a series of multiwavelength monitoring campaigns that included the IRAC camera onboard the Spitzer Space Telescope and the Chandra X-ray Observatory as well as the ground-based Keck telescope and the Submillimeter Array. Spitzer was able to monitor the black hole fluctuations continuously for 23.4 hours during each session, something that no ground-based observatory is capable of doing, and something that reliably enables scientists to spot slow trends (as distinct from short bursts). ...

Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares ~ G.G. Fazio et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Active Galactic Nuclei and Star Formation

Post by bystander » Sat Oct 13, 2018 3:32 pm

Active Galactic Nuclei and Star Formation
SAO Weekly Science Update | 2018 Oct 12
Most galaxies host a supermassive black hole (SMBH) at their nucleus (a supermassive black hole is one whose mass exceeds a million solar-masses.) A key unresolved issue in galaxy formation and evolution is the role these SMBHs play in shaping their galaxies. Most astronomers agree that there must be a strong connection because of the observed correlations between a SMBH's mass and its galaxy's luminosity, stellar mass, and the stellar motions in the galaxy. These correlations apply both in local galaxies and those at earlier cosmic epochs. But despite progress in studying SMBHs, how they effect their hosts still not understood. In some suggested scenarios the SMBH suppresses star formation in the galaxy by expelling material. In others, like the merger scenario, the effect is the opposite: the SMBH boosts star formation by helping stir up the interstellar medium. Computer simulations have been undertaken to try to settle these differences, and they tend to show that cold gas flowing in from the intergalactic medium can feed both SMBH and galaxy growth.

Star formation is one of the principle markers of galaxy growth. Observations of galaxies have tried to measure the star formation by correlating the formation rate with the intrinsic luminosity (star formation heats the dust whose infrared emission can dominate the luminosity). However, the emission from the region around a supermassive black hole that is actively accreting, an active galactic nucleus (AGN), can easily be confused with the emission from star formation. X-rays or the emission of highly excited ions can be used to determine the AGN contributions independently, but these measures may be complicated by intervening dust extinction or other effects. Furthermore there is evidence that in small or less luminous galaxies, or in those at earlier cosmic epochs, other factors like element abundances strongly influenced the galaxy's development. ...

Is There a Relationship between AGN and Star Formation in IR-Bright AGNs? ~ Y. Sophia Dai et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

'Oumuamua

Post by bystander » Sat Oct 20, 2018 6:11 pm

'Oumuamua
SAO Weekly Science Update | 2018 Oct 19
One year ago this week astronomers discovered an unusual object moving through space not too far from the Earth's orbit. In just a few days they realized it could not be a normal asteroid or comet – its path showed that it was not gravitationally bound to the solar system. It was, therefore, the first interstellar body ever discovered in our solar system that originated from outside it. It was given the Hawaiian name 'Oumuamua, "scout."

Astronomers have long thought that comets and asteroids exist in other planetary systems – perhaps 'Oumuamua came from one of them. Most current models of our own Solar System suggest that such small bodies are leftovers from the era of planet formation, and other planetary systems should also have produced comets and asteroids. Studying them would offer powerful insights into the similarities and differences in planetary system formation. So far, however, it has been impossible: the presumed large populations of comets and asteroids found in exoplanetary circumstellar disks are far away and their individual members are faint and spatially unresolved.

'Oumuamua might therefore be a rare scientific resource, and it became the subject of an intense, though brief, observing campaign - brief because it was so fast moving that it quickly became too distant and faint to detect. Nevertheless, the observations that were completed found that it was reddish in color, with no apparent spectral features and no signs of gas or dust. All these suggest it might be something like a primitive ("D-type") asteroid, although in truth there is no good analog known in our solar system. Most remarkable of all, as it rotated its variable light curve revealed that it has a very elongated shape: six times longer than it is wide. ...

Spitzer Observations of Interstellar Object 1I/'Oumuamua ~ David E. Trilling et al
viewtopic.php?t=37698
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Light Echos in the Eta Carinae Nebula

Post by bystander » Fri Oct 26, 2018 9:12 pm

Light Echos in the Eta Carinae Nebula
SAO Weekly Science Update | 2018 Oct 26
The young star Eta Carinae shines prominently in the skies of the southern hemisphere. Although located relatively far away from Earth (about seven thousand light-years away, as compared with the average distance of naked-eye stars of about a thousand light-years), it can be seen easily by people in the southern hemisphere because it is fantastically bright -- about five million times more luminous than our Sun. Astronomers have suggested one reason it is so bright is because it is very massive – perhaps as much as 200 times more massive than our Sun, making it one of the most massive stars known. (Massive stars consume their hydrogen much more quickly than Sun-like stars and are hotter and brighter.)

Eta Carinae resides in a large molecular cloud (the Carina Nebula) surrounded by a double-lobed structure of gas and dust that probably resulted from prodigious mass ejections and intermittent winds from the star (or others nearby). Eta Carinae itself is known to be highly variable; John Herschel (the son of Astronomer Royal William Herschel) first called attention to this star and a particularly dramatic flaring event it underwent in 1837 dubbed "The Great Eruption." Scientists have debated whether the whole region is dominated by active star formation and/or whether a supernova may have gone off nearby, all of which would contribute to the variability and complex structures. They have also suggested that the Great Eruption was due to the merger of a pair of binary stars, and that analogous events may power the extreme events seen in other galaxies.

As radiation and shocks from stellar flares propagate outward through the interstellar medium they encounter wisps and cloudlets of material that then light up – "echos" of the flaring events themselves. CfA astronomer David James was a member of a team that has been studying light "echoes" from Eta Carinae. The team has previously published its results on echoes seen since 2003, but now reports finding a new echo from careful subtraction of images taken at different epochs. The new echo is somewhat brighter than others they have seen, and is distinct in its character: it fades away more slowly and shows different spectral characteristics. ...

Light Echoes from the Plateau in Eta Carinae's Great Eruption
Reveal a Two-Stage Shock-Powered Event
~ Nathan Smith et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Dust Production in Evolved Exoplanetary Systems

Post by bystander » Sun Nov 04, 2018 4:29 pm

Dust Production in Evolved Exoplanetary Systems
SAO Weekly Science Update | 2018 Nov 02
Stellar variability has long offered insights into stars' physical properties. The star Mira (Omicron Ceti), for example, was so-named in 1596 by Dutch astronomers who were amazed by its miraculous brightening because of what we now know to be due to periodic changes in its size and temperature. Much less dramatic variability can also be caused when a star has a disk of dust that occasionally blocks some of its light as seen from the Earth. Smaller and fainter stars are typically out of reach for variability studies, but sometimes their disks (when they have them) can generate enough debris to affect detectable changes in the starlight. For astronomers interested in how planets formed from dust disks around stars of all types, these smaller systems have the potential to constrain the bigger picture of planet formation and evolution, especially if they signal some dramatic event or important evolutionary phase like the Late Heavy Bombardment phase of our solar system. Some changes in exoplanetary disks have already been spotted. Comets, for example, are known to be present in a handful of systems through variations in the stars' optical and ultraviolet spectra and via irregular stellar dimming.

A white dwarf star is the evolutionary end product of stars like our sun which, in another seven billion years or so, will no longer be able to sustain burning its nuclear fuel. With only about half of its mass then remaining, it will shrink to a fraction of its radius and become a white dwarf. White dwarf stars are common, the most famous one being the companion to the brightest star in the sky, Sirius. CfA astronomer Scott Kenyon was part of a team that has been studying the white dwarf star GD56 for 11.2 years, and has seen its light rise and fall by about 20% consistent with dust production or depletion from its disk. The team used the IRAC camera on Spitzer, the WISE mission, and ground-based observations from the UKIRT and Keck telescopes to characterize these fluctuations. They found that there was no change to the color of the light, implying that all the dust being destroyed or created was at about the same temperature, and hence was probably located at about the same distance from the star. The scientists hypothesize that gravitational attraction or collisional grinding between particles in the disk are responsible for the decreases or increases, respectively, in the disk’s dusty area and hence in the varying obscuration. These kinds of disk activities are known to be commonplace in disks around young stars, but were unexpected much older stars like this white dwarf. The authors conclude by noting that active processing of dust like that occurring here can result in material falling onto the star and being detected in enhanced element abundances in the stellar spectra.

Dust Production and Depletion in Evolved Planetary Systems ~ J. Farihi et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
Ann
4725 Å
Posts: 13369
Joined: Sat May 29, 2010 5:33 am

Re: Light Echos in the Eta Carinae Nebula

Post by Ann » Mon Nov 05, 2018 3:20 am

bystander wrote: Fri Oct 26, 2018 9:12 pm Light Echos in the Eta Carinae Nebula
SAO Weekly Science Update | 2018 Oct 26
The young star Eta Carinae shines prominently in the skies of the southern hemisphere. Although located relatively far away from Earth (about seven thousand light-years away, as compared with the average distance of naked-eye stars of about a thousand light-years), it can be seen easily by people in the southern hemisphere because it is fantastically bright -- about five million times more luminous than our Sun. Astronomers have suggested one reason it is so bright is because it is very massive – perhaps as much as 200 times more massive than our Sun, making it one of the most massive stars known. (Massive stars consume their hydrogen much more quickly than Sun-like stars and are hotter and brighter.)

Eta Carinae resides in a large molecular cloud (the Carina Nebula) surrounded by a double-lobed structure of gas and dust that probably resulted from prodigious mass ejections and intermittent winds from the star (or others nearby). Eta Carinae itself is known to be highly variable; John Herschel (the son of Astronomer Royal William Herschel) first called attention to this star and a particularly dramatic flaring event it underwent in 1837 dubbed "The Great Eruption." Scientists have debated whether the whole region is dominated by active star formation and/or whether a supernova may have gone off nearby, all of which would contribute to the variability and complex structures. They have also suggested that the Great Eruption was due to the merger of a pair of binary stars, and that analogous events may power the extreme events seen in other galaxies. ...

Light Echoes from the Plateau in Eta Carinae's Great Eruption
Reveal a Two-Stage Shock-Powered Event
~ Nathan Smith et al
Smithsonian Astrophysical Observatory wrote:

They interpret the results to argue for a triple-star system that led to the merger, kicking out the original primary star.
The original primary star ought to be quite bright. Where is it?

Ann
Color Commentator

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Dust Production in Evolved Exoplanetary Systems

Post by bystander » Mon Nov 12, 2018 7:53 pm

Dust Production in Evolved Exoplanetary Systems
SAO Weekly Science Update | 2018 Nov 02
Stellar variability has long offered insights into stars' physical properties. The star Mira (Omicron Ceti), for example, was so-named in 1596 by Dutch astronomers who were amazed by its miraculous brightening because of what we now know to be due to periodic changes in its size and temperature. Much less dramatic variability can also be caused when a star has a disk of dust that occasionally blocks some of its light as seen from the Earth. Smaller and fainter stars are typically out of reach for variability studies, but sometimes their disks (when they have them) can generate enough debris to affect detectable changes in the starlight. For astronomers interested in how planets formed from dust disks around stars of all types, these smaller systems have the potential to constrain the bigger picture of planet formation and evolution, especially if they signal some dramatic event or important evolutionary phase like the Late Heavy Bombardment phase of our solar system. Some changes in exoplanetary disks have already been spotted. Comets, for example, are known to be present in a handful of systems through variations in the stars' optical and ultraviolet spectra and via irregular stellar dimming.

A white dwarf star is the evolutionary end product of stars like our sun which, in another seven billion years or so, will no longer be able to sustain burning its nuclear fuel. With only about half of its mass then remaining, it will shrink to a fraction of its radius and become a white dwarf. White dwarf stars are common, the most famous one being the companion to the brightest star in the sky, Sirius. CfA astronomer Scott Kenyon was part of a team that has been studying the white dwarf star GD56 for 11.2 years, and has seen its light rise and fall by about 20% consistent with dust production or depletion from its disk. The team used the IRAC camera on Spitzer, the WISE mission, and ground-based observations from the UKIRT and Keck telescopes to characterize these fluctuations. They found that there was no change to the color of the light, implying that all the dust being destroyed or created was at about the same temperature, and hence was probably located at about the same distance from the star. The scientists hypothesize that gravitational attraction or collisional grinding between particles in the disk are responsible for the decreases or increases, respectively, in the disk’s dusty area and hence in the varying obscuration. These kinds of disk activities are known to be commonplace in disks around young stars, but were unexpected much older stars like this white dwarf. The authors conclude by noting that active processing of dust like that occurring here can result in material falling onto the star and being detected in enhanced element abundances in the stellar spectra.

Dust Production and Depletion in Evolved Planetary Systems ~ J. Farihi et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Re: Fountain of Cold Molecular Gas Pumped by a Black Hole

Post by bystander » Mon Nov 12, 2018 7:54 pm

A Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole
SAO Weekly Science Update | 2018 Nov 09
Most galaxies lie in clusters containing from a few to thousands of other galaxies. Our Milky Way, for example, belongs to the Local Group cluster of about fifty galaxies whose other large member, the Andromeda galaxy, is about 2.3 million light-years away. Clusters are the most massive gravitationally bound objects in the universe and form (according to current ideas) in a "bottoms-up" fashion with smaller structures developing first and with dark matter playing an important role. Exactly how they grow and evolve, however, depends on several competing physical processes including the behavior of the hot intracluster gas.

The galaxy Abell 2597 lies near the center of a cluster about one billion light-years away in the midst of a hot nebula (tens of millions of degrees) of cluster gas. Astronomers have long theorized that intergalactic matter like the plasma around Abell 2597 can fall onto galaxies, cool, and provide fresh material for the galaxy's star formation. They have, however, also discovered the opposite activity: galaxies’ central supermassive black holes are ejecting jets of material back out into the hot intracluster medium. CfA astronomers Grant Tremblay, Paul Nulsen, Esra Bulbul, Laurence David, Bill Forman, Christine Jones, Ralph Kraft, Scott Randall, and John ZuHone led a large team of colleagues studying the behavior of the hot gas and these competing processes in Abell 2597 using a wide range of observations including new and archival ALMA millimeter observations, optical spectroscopy, and deep Chandra X-Ray Observatory images.

The sensitive and wide-ranging datasets enabled the scientists to probe the thermodynamic character and motions of the hot gas (including both infall and outflow streams), the cold, star forming dust clouds in the galaxy, and the relative spatial arrangement of all these ingredients. ...

A Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole ~ Grant R. Tremblay et al
viewtopic.php?t=38861
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
Ann
4725 Å
Posts: 13369
Joined: Sat May 29, 2010 5:33 am

Re: Fountain of Cold Molecular Gas Pumped by a Black Hole

Post by Ann » Mon Nov 12, 2018 11:59 pm

bystander wrote: Mon Nov 12, 2018 7:54 pm A Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole
SAO Weekly Science Update | 2018 Nov 09

Most galaxies lie in clusters containing from a few to thousands of other galaxies. Our Milky Way, for example, belongs to the Local Group cluster of about fifty galaxies whose other large member, the Andromeda galaxy, is about 2.3 million light-years away. Clusters are the most massive gravitationally bound objects in the universe and form (according to current ideas) in a "bottoms-up" fashion with smaller structures developing first and with dark matter playing an important role. Exactly how they grow and evolve, however, depends on several competing physical processes including the behavior of the hot intracluster gas.

The galaxy Abell 2597 lies near the center of a cluster about one billion light-years away in the midst of a hot nebula (tens of millions of degrees) of cluster gas. Astronomers have long theorized that intergalactic matter like the plasma around Abell 2597 can fall onto galaxies, cool, and provide fresh material for the galaxy's star formation. They have, however, also discovered the opposite activity: galaxies’ central supermassive black holes are ejecting jets of material back out into the hot intracluster medium. CfA astronomers Grant Tremblay, Paul Nulsen, Esra Bulbul, Laurence David, Bill Forman, Christine Jones, Ralph Kraft, Scott Randall, and John ZuHone led a large team of colleagues studying the behavior of the hot gas and these competing processes in Abell 2597 using a wide range of observations including new and archival ALMA millimeter observations, optical spectroscopy, and deep Chandra X-Ray Observatory images.

The sensitive and wide-ranging datasets enabled the scientists to probe the thermodynamic character and motions of the hot gas (including both infall and outflow streams), the cold, star forming dust clouds in the galaxy, and the relative spatial arrangement of all these ingredients. ...

A Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole ~ Grant R. Tremblay et al
viewtopic.php?t=38861
So instead of being used for star formation, the gas in huge elliptical galaxies and galaxy clusters can be locked up in an Old Faithful geyser kind of repetitive action.

Ann
Color Commentator

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Gravitationally Lensed Quasars

Post by bystander » Sat Nov 17, 2018 3:19 am

Gravitationally Lensed Quasars
SAO Weekly Science Update | 2018 Nov 16
The path of light is bent by mass, an effect predicted by Einstein's theory of gravity, and when a massive galaxy or cluster lies along our line-of-sight to a more distant galaxy its matter will act as a lens to image the light from that object. So-called strong gravitational lensing creates highly distorted, magnified and often multiple images of a single source. (Strong lensing is distinct from weak lensing which results in modestly deformed shapes of background galaxies.) Quasars are galaxies with massive black holes at their cores around which vast amounts of energy are being radiated, more than from the rest of the entire host galaxy. Their luminosities allow quasars to be seen at cosmological distances and they are therefore likely candidates for strong lensing, with a few hundred gravitationally lensed quasars known so far. They have provided valuable information not only about quasars and lensing but also on cosmology since the distorted light paths of the distant objects have traveled across cosmological distances.

CfA astronomer David James was a member of a large international team systematically searching for new gravitationally lensed quasars. They used the WISE infrared all-sky survey to search for candidates whose infrared colors suggested they were galaxies with active nuclei (like quasars). They processed images of these candidates with a sophisticated algorithm looking for evidence of their being multiple components, such as would be expected from a lensed system, and then followed up this subset with spectroscopic and ground-based imaging observations using higher spatial resolution than WISE. Of the original set of fifty-four candidates, they found two whose spectra confirmed that they were gravitationally lensed quasars, one with four sub-images and one with two, each of whose light has been traveling towards us for about ten billion years. The images in these two cases also showed traces of the lensing galaxy, an important verification of the lensing effect, although the galaxies were too faint to obtain measurements of their distances. The scientists also identified another seven objects that are likely to be doubled-quasars, but further research is needed to confirm those results.

The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign –
II. New quasar lenses from double component fitting
~ T. Anguita et al The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign –
I. Overview and classification of candidates selected by two techniques
~ T. Treu et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

The Cygnus Loop

Post by bystander » Tue Nov 27, 2018 3:28 pm

The Cygnus Loop
SAO Weekly Science Update | 2018 Nov 23
The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the detritus of the explosive death of a massive star about ten to twenty thousand years ago. Detailed modeling of its spectacular filamentary shape suggests that the explosion occurred inside an interstellar cavity created by the progenitor star. As is common in astronomy, many of the precise physical properties of the object are rendered uncertain by the uncertainty of its distance. For decades scientists used a value of about 2500 light-years based on analyses of its gas motions by Hubble in 1937 and Minkowski in 1958. Many recent distance estimates have varied over a wide range generally consistent with this one, but the most cited value is a 2005 measurement of between 1500 and 2100 light-years.

During the past two decades astronomers have tried to pin down the distance by measuring the distances to stars either behind or within the nebula as determined by seeing absorption lines from the nebula in their spectra but the distances to those stars are in turn likewise uncertain, and parallax measurements of some of the stellar distances have also been unreliable. Efforts have also been made recently to measure the distance using the motions of the nebular gas directly, with published estimates suggesting a firm distance less than 2600 light-years and consistent with the old value of 2500 light-years.

The Gaia satellite has been making very precise measurements of stellar parallaxes, and the most recent catalogs have now been released. CfA astronomer John Raymond joined with four colleagues to apply the Gaia data to the problem of the Cygnus Loop distance by looking for absorption signatures from the gas in the two dozen stellar spectra, thereby constraining the stars as being foreground or background objects. Their result: 2420 light-years to the central part of the nebula, with a 3.4% uncertainty. They also identified a star whose wind is interacting with the supernova remnant. The new distance result has several important implications. It means that the supernova that created the Loop had less energy than previously thought by perhaps as much as a factor of four (about as much energy as the current Sun would emit in six billion years). It also means that the nebula is probably aspherical in shape with the eastern being limb being closer to us than the western side and with a diameter of about one hundred and twenty light-years.

The Cygnus Loop's Distance, Properties, and Environment Driven Morphology ~ Robert A. Fesen et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

How Do Stellar Binaries Form?

Post by bystander » Mon Dec 03, 2018 5:15 pm

How Do Stellar Binaries Form?
SAO Weekly Science Update | 2018 Nov 30
Most stars with the mass of the sun or larger have one or more companion stars, but when and how these multiple stars form is one of the controversial central problems of astronomy. Gravity contracts the natal gas and dust in an interstellar cloud until clumps develop that are dense enough to coalesce into stars, but how are multiple stars fashioned? Because the shrinking cloud has a slight spin, a disk (possibly a preplanetary system) eventually forms. In one model of binary star formation, this disk fragments due to gravitational instabilities, producing a second star. The other model argues that turbulence in the contracting cloud itself fragments the clumps into multiple star systems. In the first case, simulations show that the two stars should be relatively close together, typically less than about 600 astronomical units (one AU is the average distance of the earth from the sun). If the second mechanism is correct, both close and wide binary pairs can form. A distinguishing feature of the turbulent fragmentation process, and one that facilitates an observational test, is that the seeds for multiplicity are produced early in the pre-stellar phases.

CfA astronomers Sarah Sadavoy and Mike Dunham were members of a team of astronomers that used the VLA and ALMA radio and millimeter-wave facilities to study seventeen protostellar systems of multiple-stars in the nearby Perseus cloud. The sensitive observations were able to reveal the environments of the systems and determine the presence of any small-scale rotation or surrounding material. Twelve of the systems were spatially resolved, and eight showed dust emission structures surrounding the pair. The slightly more evolved systems in the set showed no evidence for circumbinary dust; they have probably reached the end point of their early evolution and finished accreting material. In summary, about two-thirds of the systems were consistent with the disk fragmentation theory and one third was inconsistent with it. The results show that the disk fragmentation mechanism is an important one but probably not the whole story, and a larger sample should help constrain the processes even further.

The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus Protostars.
VI. Characterizing the Formation Mechanism for Close Multiple Systems
~ John J. Tobin et al From Large-scale to Protostellar Disk Fragmentation into Close Binary Stars ~ Leonardo Di G. Sigalotti et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Stormy Weather in 3C196.1

Post by bystander » Sat Dec 08, 2018 3:22 pm

Stormy Weather in 3C196.1
SAO Weekly Science Update | 2018 Dec 07
3C196.1 is a massive elliptical galaxy, the brightest member of a cluster of galaxies about three billion light-years away that is notable for its strong X-ray and radio emission. The radiation is a characteristic signature of accretion processes around a supermassive black hole at the galaxy's nucleus. Supporting this interpretation is the galaxy's disturbed shape, which indicates the galaxy has undergone a recent merger, perhaps triggering such accretion onto the black hole and thus powering the emission. Active galactic nuclei (AGN) are seen in many similar galaxies, and they power massive outflows of material thought to disrupt and quench star formation in the galaxies, but astronomers do not understand very well when or how these processes happen.

CfA astronomers Frederica Ricci, Lorenzo Lovisari, Ralph Kraft, Grant Tremblay, Bill Forman, and Belinda Wilkes led a team that for the past eight years has used the Chandra X-ray Observatory, Hubble, and the VLA radio facility to probe nuclear outbursts and merger activity in the galaxy 3C196.1 through the analysis of the distribution and excitation of its hot gas. Their images show that the gas lies in hot bubbles rising outward from the nuclear region into zones of cooler material, along with shocks arising from the creation of the bubbles that (like stormy weather) shape its environment. The team finds evidence for multiple episodes of outburst activity based on the radio images, and compelling evidence for a past merger. The optical images tie the hot emission lines directly to the AGN activity. They even see a jet from the nucleus extending outward about thirty light-years and closely aligned with the larger radio jet that extends over thousands of light-years. From the temperatures, pressures, and other properties of the hot bubbles and their environments, the scientists estimate the lifetimes of the cavities, the inner one being about 12 million years old and the outer one being about 280 million years old. The results help to reveal the physical processes at work in powering the emission from this galaxy and to offer insight into the wider family of active galactic nuclei.

Stormy Weather in 3C 196.1: Nuclear Outbursts and Merger Events
Shape the Environment of the Hybrid Radio Galaxy 3C 196.1
~ F. Ricci et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21571
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

A New Neptune-Size Exoplanet

Post by bystander » Sat Dec 15, 2018 5:04 pm

A New Neptune-Size Exoplanet
SAO Weekly Science Update | 2018 Dec 14
Image
An image of Neptune taken by the Voyager spacecraft compared with an
artist's conception of the exoplanet K2-263b. (Credit: NASA/ExoKyoto)

The remarkable exoplanet discoveries made by the Kepler and K2 missions have enabled astronomers to begin to piece together the history of the Earth and to understand how and why it differs from its diverse exoplanetary cousins. Two still outstanding puzzles include the differences between the formation and evolution of rocky versus non-rocky small planets, and why there seem to be a size gap with very few exoplanets at or about two Earth-radii in size (planets with smaller radii are likely to be rocky or Earth-like in their composition). In order to estimate an exoplanet’s composition its density is needed, requiring a measurement of mass as well as size. While a radius can be estimated from the shape of the planet's transit curve as it blocks out its host star’s light, a mass is more difficult to determine. In order to develop the emerging picture, however, precise and accurate masses are required for more planets that are similar in size to the Earth.

The K2 exoplanetary mission is the revived version of the Kepler exoplanetary discovery mission. Together they have discovered thousands of exoplanets, and uncovered a remarkable and unexpected diversity in the exoplanet population. K2 is sensitive only to short-period planets (it has only found a few with periods longer than 40 days). The exoplanet K2-263b orbits a star less massive than the sun (0.86 solar-masses) and located 536 light-years away as measured with the new Gaia satellite. This exoplanet has a radius of 2.41 Earth-radii (with a 5% uncertainty). CfA astronomers Maria Lopez-Morales, Dave Charbonneau, Raphaelle Haywood, John Johnson, Dave Latham, David Phillips, and Dimitar Sasselov and their colleagues used the HARPS-N high precision spectrometer on the Telescopio Nazionale Galileo in La Palma, Spain, to measure the periodic velocity of the exoplanet as it orbited and thus to derive its mass.

The HARPS-N velocity measurements were amazingly precise - uncertain to about a mere eleven miles an hour, about the speed of a slow bicyclist. From the orbital details the scientists obtained an exoplanet mass of 14.8 Earth-masses and a hence a density of about 5.6 grams per cubic centimeter (for comparison, the density of water is one gram per cubic centimeter, and the average density of the rocky Earth is 5.51 grams per cubic centimeter). The scientists conclude that K2-263b most likely contains an equivalent amount of ices compared to rocks, roughly consistent with current ideas about planet formation and the relative abundances in a circumstellar nebula of the building-block elements like iron, nickel, magnesium, silicon, oxygen, carbon and nitrogen.

K2-263b: A 50-day period sub-Neptune with a mass measurement using HARPS-N ~ A. Mortier et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply