SAO: A Universal Law for Star Formation

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

SAO: A Universal Law for Star Formation

Post by bystander » Sun Jan 08, 2012 3:54 am

A Universal Law for Star Formation
Smithsonian Astrophysical Observatory
Weekly Science Update | 2012 Jan 06
Star formation is studied by astronomers not only because it produces new stars and planetary systems. It also generates copious amounts of ultraviolet light that heats dust which in turn causes the birth region to shine brightly in the infrared. Galaxies so far away, for example, that their light has been traveling for over eleven billion years have been discovered thanks to their bright infrared star formation activity. However the observation of star formation in other galaxies tends to encompass very large volumes; in our own galaxy, by contrast, research focuses on individual star forming molecular clouds because they are much closer and so appear much larger in angular size. A fundamental yet still only partially unresolved question is whether the same physical processes are at work in all cases. It could be, for instance, that large-scale effects in galaxies, such as inter-galaxy collisions, make their star factories completely different (on average) from those in local, relatively quiescent clouds. After all, the estimated rates of star formation in infrared galaxies are sometimes a million or more times that of local clouds.

CfA astronomers Charlie Lada and Jan Forbrich, with two colleagues, argue in a new paper that the basic processes are the same. They examined the relationship between the rate of star formation (as determined by numbers of young stars) and the density of molecular gas in the natal regions (as determined by radio measurements of diagnostic molecules). They found good evidence that in all cases the rate of star formation, across nearly a factor of a billion, is linearly proportional to the amount of dense gas present. Their result contradicts the earlier, more established idea that the relationship is non-linear with total gas abundance, but the authors offer a convincing explanation for why the earlier results were in error. The new paper helps to resolve the uncertainty about global star formation, and focuses future research on the question: what produces the dense gas that is responsible?

Star Formation Rates in Molecular Clouds and the Nature of the Extragalactic Scaling Relations - CJ Lada, J Forbrich, M Lombardi, JF Alves
<< Previous Science Update
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply