ESO/ESA: Bizarre Alignment of Planetary Nebulae

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

ESO/ESA: Bizarre Alignment of Planetary Nebulae

Post by bystander » Wed Sep 04, 2013 4:30 pm

Bizarre Alignment of Planetary Nebulae
ESA/HEIC Hubble Science Release
NASA/STScI HubbleSite News Release
ESO Science Release | 2013 Sep 04

Astronomers have used ESO's New Technology Telescope and the NASA/ESA Hubble Space Telescope to explore more than 100 planetary nebulae in the central bulge of our galaxy. They have found that butterfly-shaped members of this cosmic family tend to be mysteriously aligned — a surprising result given their different histories and varied properties.

The final stages of life for a star like our Sun result in the star puffing its outer layers out into the surrounding space, forming objects known as planetary nebulae in a wide range of beautiful and striking shapes. One type of such nebulae, known as bipolar planetary nebulae, create ghostly hourglass or butterfly shapes around their parent stars.

All these nebulae formed in different places and have different characteristics. Neither the individual nebulae, nor the stars that formed them, interact with other planetary nebulae. However, a new study by astronomers from the University of Manchester, UK, now shows surprising similarities between some of these nebulae: many of them line up in the sky in the same way [1].

"This really is a surprising find and, if it holds true, a very important one," explains Bryan Rees of the University of Manchester, one of the paper's two authors. "Many of these ghostly butterflies appear to have their long axes aligned along the plane of our galaxy. By using images from both Hubble and the NTT we could get a really good view of these objects, so we could study them in great detail."

The astronomers looked at 130 planetary nebulae in the Milky Way's central bulge. They identified three different types, and peered closely at their characteristics and appearance [2].

"While two of these populations were completely randomly aligned in the sky, as expected, we found that the third — the bipolar nebulae — showed a surprising preference for a particular alignment," says the paper's second author Albert Zijlstra, also of the University of Manchester. "While any alignment at all is a surprise, to have it in the crowded central region of the galaxy is even more unexpected."

Planetary nebulae are thought to be sculpted by the rotation of the star system from which they form. This is dependent on the properties of this system — for example, whether it is a binary [3], or has a number of planets orbiting it, both of which may greatly influence the form of the blown bubble. The shapes of bipolar nebulae are some of the most extreme, and are thought to be caused by jets blowing mass outwards from the star system perpendicular to its orbit.

"The alignment we're seeing for these bipolar nebulae indicates something bizarre about star systems within the central bulge," explains Rees. "For them to line up in the way we see, the star systems that formed these nebulae would have to be rotating perpendicular to the interstellar clouds from which they formed, which is very strange."

While the properties of their progenitor stars do shape these nebulae, this new finding hints at another more mysterious factor. Along with these complex stellar characteristics are those of our Milky Way; the whole central bulge rotates around the galactic centre. This bulge may have a greater influence than previously thought over our entire galaxy — via its magnetic fields. The astronomers suggest that the orderly behaviour of the planetary nebulae could have been caused by the presence of strong magnetic fields as the bulge formed.

As such nebulae closer to home do not line up in the same orderly way, these fields would have to have been many times stronger than they are in our present-day neighbourhood [4].

"We can learn a lot from studying these objects," concludes Zijlstra. "If they really behave in this unexpected way, it has consequences for not just the past of individual stars, but for the past of our whole galaxy."
  1. Notes:
    [*] The "long axis" of a bipolar planetary nebula slices though the wings of the butterfly, whilst the "short axis" slices through the body.

    [*] The shapes of the planetary nebula images were classified into three types, following conventions: elliptical, either with or without an aligned internal structure, and bipolar.

    [*] A binary system consists of two stars rotating around their common centre of gravity.

    [*] Very little is known about the origin and characteristics of the magnetic fields that were present in our galaxy when it was young, so it is unclear how they have changed over time.

Alignment of the Angular Momentum Vectors of Planetary Nebulae in the Galactic Bulge - B. Rees, A. A. Zijlstra
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

BDanielMayfield
Don't bring me down
Posts: 2524
Joined: Thu Aug 02, 2012 11:24 am
AKA: Bruce
Location: East Idaho

Re: ESO/ESA: Bizarre Alignment of Planetary Nebulae

Post by BDanielMayfield » Wed Sep 04, 2013 9:09 pm

Don’t exoplanet searches using the transit method like Kepler assume that the orientations of planetary systems are randomly spread across all possible angles? I saw that the planetary nebula that were found to be aligned in this study were in the galactic bulge, but in view of this finding is it still safe to assume that planetary system alignment is totally random even this far out from the core of our galaxy?
Just as zero is not equal to infinity, everything coming from nothing is illogical.

User avatar
Chris Peterson
Abominable Snowman
Posts: 18197
Joined: Wed Jan 31, 2007 11:13 pm
Location: Guffey, Colorado, USA
Contact:

Re: ESO/ESA: Bizarre Alignment of Planetary Nebulae

Post by Chris Peterson » Wed Sep 04, 2013 10:50 pm

BDanielMayfield wrote:Don’t exoplanet searches using the transit method like Kepler assume that the orientations of planetary systems are randomly spread across all possible angles? I saw that the planetary nebula that were found to be aligned in this study were in the galactic bulge, but in view of this finding is it still safe to assume that planetary system alignment is totally random even this far out from the core of our galaxy?
An assumption of random orientation is made for the purpose of statistically estimating the total number of planetary system based on the number observed, but that's all. Whether or not there is some sort of preferential alignment shouldn't affect the search protocols at all.
Chris

*****************************************
Chris L Peterson
Cloudbait Observatory
https://www.cloudbait.com

Post Reply