National Radio Astronomy Observatory | Center for Astrophysics | ALMA | 2014 Dec 11
Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) may have detected the dusty hallmarks of an entire family of Pluto-size objects swarming around an adolescent version of our own Sun.
- [i]ALMA image of the dust surrounding the star HD 107146. Dust in the outer reaches of the disk is thicker than in the inner regions, suggesting that a swarm of Pluto-size planetesimals is causing smaller objects to smash together. The dark ring-like structure in the middle portion of the disk may be evidence of a gap where a planet is sweeping its orbit clear of dust. [b]Credit: L. Ricci, ALMA (NRAO/NAOJ/ESO); B. Saxton (NRAO/AUI/NSF)[/b][/i]
By making detailed observations of the protoplanetary disk surrounding the star known as HD 107146, the astronomers detected an unexpected increase in the concentration of millimeter-size dust grains in the disk's outer reaches. This surprising increase, which begins remarkably far -- about 13 billion kilometers -- from the host star, may be the result of Pluto-size planetesimals stirring up the region, causing smaller objects to collide and blast themselves apart.
Dust in debris disks typically consists of material left over from the formation of planets. Very early in the lifespan of the disk, this dust is continuously replenished by collisions of larger bodies, such as comets and asteroids. In mature solar systems with fully formed planets, comparatively little dust remains. In between these two ages -- when a solar system is in its awkward teenage years -- certain models predict that the concentration of dust would be much denser in the most distant regions of the disk. This is precisely what ALMA has found.
"The dust in HD 107146 reveals this very interesting feature -- it gets thicker in the very distant outer reaches of the star’s disk," said Luca Ricci, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and lead author on a paper accepted for publication in the Astrophysical Journal. At the time of the observations, Ricci was with the California Institute of Technology in Pasadena.
"The surprising aspect is that this is the opposite of what we see in younger primordial disks where the dust is denser near the star. It is possible that we caught this particular debris disk at a stage in which Pluto-size planetesimals are forming right now in the outer disk while other Pluto-size bodies have already formed closer to the star," said Ricci. ...
ALMA observations of the debris disk around the young Solar Analog HD 107146 - L. Ricci et al
- arXiv.org > astro-ph > arXiv:1410.8265 > 30 Oct 2014