CfA: Disk Gaps Don't Always Signal Planets

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

CfA: Disk Gaps Don't Always Signal Planets

Post by bystander » Tue Nov 03, 2015 5:31 pm

Disk Gaps Don't Always Signal Planets
Harvard-Smithsonian Center for Astrophysics | 2015 Nov 02
[img3="This artist's concept illustrates a solar system that is a much younger version of our own. Dusty disks, like the one shown here circling the star, are the breeding grounds of planets. When visible or near-infrared observations show a gap in a disk like this, it is often interpreted as evidence for an unseen planet. However, new research shows that a gap could be a sort of cosmic illusion and not the sign of a hidden planet after all. (Credit: NASA/JPL-Caltech/T. Pyle (SSC))"]https://www.cfa.harvard.edu/sites/www.c ... 1/base.jpg[/img3][hr][/hr]
When astronomers study protoplanetary disks of gas and dust that surround young stars, they sometimes spot a dark gap like the Cassini division in Saturn's rings. It has been suggested that any gap must be caused by an unseen planet that formed in the disk and carved out material from its surroundings. However, new research shows that a gap could be a sort of cosmic illusion and not the sign of a hidden planet after all.

"If we don't see light scattered from the disk, it doesn't necessarily mean that nothing is there," says lead author Til Birnstiel (Max Planck Institute for Astronomy), who conducted the research while at the Harvard-Smithsonian Center for Astrophysics (CfA).

The researchers studied disks that shine in visible or near-infrared wavelengths due to scattered, or reflected, light. (In contrast, radio or millimeter telescopes pick up emission directly from the disk itself.)

Scattered light comes from starlight that bounces off tiny particles about the size of cigarette smoke. Those particles initially suffuse the protoplanetary disk, but undergo changes over time.

Small particles can clump together to form larger and larger objects, eventually growing into full-fledged planets. However, when particles collide they sometimes break apart instead of sticking together. Particles can also move closer to or farther from the star in a process called migration. The team modeled these processes using the Smithsonian's Hydra supercomputer cluster. ...

Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks - Tilman Birnstiel et al
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply