Page 1 of 1

ALMA: Precise Record of Baby-Stars’ Growth on Millimeter Wavelength

Posted: Tue Sep 04, 2018 7:09 pm
by bystander
Precise Record of Baby-Stars’ Growth on Millimeter Wavelength
ALMA | ESO | NAOJ | NRAO | 2018 Sep 04
Babies grow up fast in the blink of an eye, and thus, their parents wish to record their growth without missing any moment; This is true not only for human babies but also for baby-stars, called protostars, although the recorders are not parents but astronomers in this case. Protostars’ age, or evolutionary stages, has been determined from observations at near and mid-infrared wavelengths. The youngest stage, called Class 0, is defined by non-detection at near and mid-infrared wavelengths, corresponding to <300,000 years old. This definition cannot differentiate younger from older Class 0 protostars. Furthermore, astronomers expect from studies on even older protostars that protostars grow up faster at earlier stages than at later stages, as human babies do, implying that they miss many precious moments of their growth.

As we all know, human “babies” (fetuses) in mothers’ wombs also grow at a fast rate – just as the star babies do. Using ultrasound scanning techniques, parents can hear the baby’s heart beating during the regular prenatal examinations; not only so, but they could also even detect how much the thigh bone grows, how much the head circumference is, or perhaps, getting some hints about “girl or boy?”! All of these are essential indicators informing us about how much progress our babies are making concerning growth.

Similarly, to record the critical evolutionary stages of baby stars, rather than ultrasound scanners, astronomers would use millimeter/ sub-millimeter telescopes. To probe the fast growth of Class 0 protostars, an international team led by Dr. Yusuke Aso of Academia Sinica Institute of Astronomy and Astrophysics (ASIAA, Taiwan) has observed three Class 0 protostars using the Atacama Large Millimeter/submillimeter Array (ALMA) and has differentiated evolutionary stages of these protostars in multiple aspects. Thanks to ALMA’s strong capabilities, the team revealed four evolutionary indicators in details: (1) dusty disk growth on 100 astronomical-unit scales, (2) widening of outflow opening angles, (3) carbon monoxide (CO) desorption from icy grains due to temperature rising, and (4) weakening of accretion shock, all of which are consistent with theoretical predictions for young protostars.

Their work demonstrates the importance of millimeter wavelength on probing young protostars’evolution. The work was also accomplished by ALMA’s high spatial resolution differentiating morphology on a small scale and its high sensitivity detecting the faint molecular line from the cold regions. The lead author Dr. Aso says: “From now on, the precious moments of young baby-stars’ fast growth will be recorded more precisely on millimeter wavelength.”

The Distinct Evolutionary Nature of two Class 0 Protostars in Serpens Main SMM4 - Yusuke Aso et al

Re: ALMA: Precise Record of Baby-Stars’ Growth on Millimeter Wavelength

Posted: Tue Sep 04, 2018 11:35 pm
by neufer
.
At first, the infant, mewling and puking in the nurse's arms.

Re: ALMA: Precise Record of Baby-Stars’ Growth on Millimeter Wavelength

Posted: Wed Sep 05, 2018 2:50 pm
by Fred the Cat
But before that all the good stuff happens. As with aggregation of star stuff why the sperm is driven to the egg fertilizes the imagination too. :shock:

Re: ALMA: Precise Record of Baby-Stars’ Growth on Millimeter Wavelength

Posted: Wed Sep 05, 2018 3:27 pm
by neufer
bystander wrote: Tue Sep 04, 2018 7:09 pm Precise Record of Baby-Stars’ Growth on Millimeter Wavelength
ALMA | ESO | NAOJ | NRAO | 2018 Sep 04
As we all know, human “babies” (fetuses) in mothers’ wombs also grow at a fast rate – just as the star babies do. Using ultrasound scanning techniques, parents can hear the baby’s heart beating during the regular prenatal examinations; not only so, but they could also even detect how much the thigh bone grows, how much the head circumference is, or perhaps, getting some hints about “girl or boy?”! All of these are essential indicators informing us about how much progress our babies are making concerning growth.

Similarly, to record the critical evolutionary stages of baby stars, rather than ultrasound scanners, astronomers would use millimeter/ sub-millimeter telescopes. To probe the fast growth of Class 0 protostars, an international team led by Dr. Yusuke Aso of Academia Sinica Institute of Astronomy and Astrophysics (ASIAA, Taiwan) has observed three Class 0 protostars using the Atacama Large Millimeter/submillimeter Array (ALMA) and has differentiated evolutionary stages of these protostars in multiple aspects.
https://en.wikipedia.org/wiki/Medical_ultrasound

<<Sonography is effective for imaging soft tissues of the body. Superficial structures such as muscles, tendons, testes, breast, thyroid and parathyroid glands, and the neonatal brain are imaged at a higher frequency (wavelength = 0.08-0.22 mm), which provides better axial and lateral resolution. Deeper structures such as liver and kidney are imaged at a lower frequency (wavelength = 0.24-1.5 mm) with lower axial and lateral resolution but greater penetration. >>

Re: ALMA: Precise Record of Baby-Stars’ Growth on Millimeter Wavelength

Posted: Thu Sep 06, 2018 1:45 pm
by Fred the Cat
Slight variances in human evolution may mimic star formation in crazy ways we've yet uncovered. When our daughter was young an ENT ordered a sonogram when her ear was giving her trouble. He said she had a lesion and removed it. He described it as a remnant gill though I wonder :?:

Our "fish girl" has now grown into a star of the classroom trying to fuse math and human neurons into co-existence mm by mm :clap: