Page 1 of 1

NASA: Four Missions Selected to Study the Solar System

Posted: Wed Feb 19, 2020 6:17 pm
by bystander
Four Possible Missions Selected to Study Secrets of Solar System
NASA | 2020 Feb 13

NASA has selected four Discovery Program investigations to develop concept studies for new missions. Although they’re not official missions yet and some ultimately may not be chosen to move forward, the selections focus on compelling targets and science that are not covered by NASA’s active missions or recent selections. Final selections will be made next year. ...

The selected proposals are:

DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging Plus)

DAVINCI+ will analyze Venus’ atmosphere to understand how it formed, evolved and determine whether Venus ever had an ocean. DAVINCI+ plunges through Venus’ inhospitable atmosphere to precisely measure its composition down to the surface. The instruments are encapsulated within a purpose-built descent sphere to protect them from the intense environment of Venus. The “+” in DAVINCI+ refers to the imaging component of the mission, which includes cameras on the descent sphere and orbiter designed to map surface rock-type. The last U.S.-led, in-situ mission to Venus was in 1978. The results from DAVINCI+ have the potential to reshape our understanding of terrestrial planet formation in our solar system and beyond. James Garvin of NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator. Goddard would provide project management.

Io Volcano Observer (IVO)

IVO would explore Jupiter’s moon, Io, to learn how tidal forces shape planetary bodies. Io is heated by the constant crush of Jupiter’s gravity and is the most volcanically active body in the solar system. Little is known about Io’s specific characteristics, such as whether a magma ocean exists in its interior. Using close-in flybys, IVO would assess how magma is generated and erupted on Io. The mission’s results could revolutionize our understanding of the formation and evolution of rocky, terrestrial bodies, as well as icy ocean worlds in our solar system, and extrasolar planets across the universe. Alfred McEwen of the University of Arizona in Tucson is the principal investigator. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland would provide project management.

TRIDENT

Trident would explore Triton, a unique and highly active icy moon of Neptune, to understand pathways to habitable worlds at tremendous distances from the Sun. NASA’s Voyager 2 mission showed that Triton has active resurfacing—generating the second youngest surface in the solar system—with the potential for erupting plumes and an atmosphere. Coupled with an ionosphere that can create organic snow and the potential for an interior ocean, Triton is an exciting exploration target to understand how habitable worlds may develop in our solar system and others. Using a single fly-by, Trident would map Triton, characterize active processes, and determine whether the predicted subsurface ocean exists. Louise Prockter of the Lunar and Planetary Institute/Universities Space Research Association in Houston is the principal investigator. NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, would provide project management

VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)

VERITAS would map Venus’ surface to determine the planet’s geologic history and understand why Venus developed so differently than the Earth. Orbiting Venus with a synthetic aperture radar, VERITAS charts surface elevations over nearly the entire planet to create three-dimensional reconstructions of topography and confirm whether processes, such as plate tectonics and volcanism, are still active on Venus. VERITAS would also map infrared emissions from the surface to map Venus’ geology, which is largely unknown. Suzanne Smrekar of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, is the principal investigator. JPL would provide project management. ...

NASA/JPL: VERITAS: Exploring the Deep Truths of Venus

Posted: Fri Jul 10, 2020 7:42 pm
by bystander
VERITAS: Exploring the Deep Truths of Venus
NASA | JPL-Caltech | VERITAS | 2020 Jul 08

Under consideration to become the next Discovery Program mission, VERITAS would reveal the inner workings of Earth's mysterious "twin."

Imagine Earth. Now fill the skies with thick, Sun-obscuring clouds of sulfuric acid; boil off the oceans by cranking up the temperature to 900 degrees Fahrenheit (nearly 500 degrees Celsius), and boost the air pressure high enough to flatten you like a pancake. What you now have is Venus, a rocky planet similar in size to Earth but different in almost every other way.

How these "sister planets" evolved so differently has been a burning scientific question for decades, and a proposed mission called VERITAS seeks to provide answers by transforming our understanding of the internal geodynamics that shaped the planet. The mission could lend insights into our own planet's evolution and even help us better understand rocky planets orbiting other stars.

Short for Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy, VERITAS is being considered for selection under NASA's Discovery Program and would be managed by NASA's Jet Propulsion Laboratory in Southern California. The project's partners include Lockheed Martin, the Italian Space Agency, the German Space Agency, and the French Space Agency. ...

The last mission to study the planet's surface, NASA's Magellan spacecraft, ended in 1994. While it provided tantalizing clues about Venus' geology, the instrumentation couldn't provide certitude as to the origin of many of the planet's surface features.

Proposed for a 2026 launch, VERITAS would orbit the planet and peer through the obscuring clouds with a powerful state-of-the art radar system to create 3D global maps and a near-infrared spectrometer to figure out what the surface is made of. It would also measure the planet's gravitational field to determine the structure of Venus' interior. Together, the instruments would offer clues about the planet's past and present geologic processes, from its core to its surface. ...