https://en.wikipedia.org/wiki/Near-Earth_supernova wrote:
<<A near-Earth supernova is an explosion resulting from the death of a star that occurs close enough to the Earth (roughly less than 10 to 300 parsecs (30 to 1000 light-years) away) to have noticeable effects on Earth's biosphere.
Gamma ray bursts from "dangerously close" supernova explosions occur two or more times per billion years, and this has been proposed as the cause of the end Ordovician extinction, which resulted in the death of nearly 60% of the oceanic life on Earth. A.L. Melott, suggested that the Ordovician extinction could have been caused by a gamma-ray burst originating from a hypernova in a nearby arm of the Milky Way galaxy, within 6,000 light-years of Earth. A ten-second burst would have stripped the Earth's atmosphere of half of its ozone almost immediately, exposing surface-dwelling organisms, including those responsible for planetary photosynthesis, to high levels of extreme ultraviolet radiation. Under this hypothesis, several groups of marine organisms with a planktonic lifestyle were more exposed to UV radiation than groups that lived on the seabed. This is consistent with observations that planktonic organisms suffered severely during the first extinction pulse. In addition, species dwelling in shallow water were more likely to become extinct than species dwelling in deep water. A gamma-ray burst could also explain the rapid onset of glaciation, since ozone and nitrogen would react to form nitrogen dioxide, a darkly-colored aerosol which cools the earth.
It is estimated that a Type II supernova closer than eight parsecs (26 light-years) would destroy more than half of the Earth's ozone layer. Such estimates are based on atmospheric modeling and the measured radiation flux from SN 1987A, a Type II supernova in the Large Magellanic Cloud. Estimates of the rate of supernova occurrence within 10 parsecs of the Earth vary from 0.05–0.5 per billion years to 10 per billion years. Several studies assume that supernovae are concentrated in the spiral arms of the galaxy, and that supernova explosions near the Sun usually occur during the approximately 10 million years that the Sun takes to pass through one of these regions.Examples of relatively near supernovae are the Vela Supernova Remnant (c. 800 ly, c. 12,000 years ago) and Geminga (c. 550 ly, c. 300,000 years ago).
Historically, each near-Earth supernova explosion has been associated with a global warming of around 3–4 °C. An estimated 20 supernova explosions have happened within 300 pc of the Earth over the last 11 million years. On average, a supernova explosion occurs within 10 parsecs (33 light-years) of the Earth every 240 million years. Gamma rays are responsible for most of the adverse effects that a supernova can have on a living terrestrial planet. In Earth's case, gamma rays induce radiolysis of diatomic N
2 and O
2 in the upper atmosphere, converting molecular nitrogen and oxygen into nitrogen oxides, depleting the ozone layer enough to expose the surface to harmful solar and cosmic radiation (mainly ultra-violet). Phytoplankton and reef communities would be particularly affected, which could severely deplete the base of the marine food chain.
In 1998 a supernova remnant, RX J0852.0-4622, was found in front (apparently) of the larger Vela Supernova Remnant. Gamma rays from the decay of titanium-44 (half-life about 60 years) were independently discovered emanating from it, showing that it must have exploded fairly recently (perhaps around the year 1200), but there is no historical record of it. The flux of gamma rays and X-rays indicates that the supernova was relatively close to us (perhaps 200 parsecs or 660 ly). If so, this is an unexpected event because supernovae less than 200 parsecs away are estimated to occur less than once per 100,000 years.
Evidence from daughter products of short-lived radioactive isotopes shows that a nearby supernova helped determine the composition of the Solar System 4.5 billion years ago, and may even have triggered the formation of this system. Supernova production of heavy elements over astronomic periods of time ultimately made the chemistry of life on Earth possible.
Past supernovae might be detectable on Earth in the form of metal isotope signatures in rock strata. Subsequently, iron-60 enrichment has been reported in deep-sea rock of the Pacific Ocean by researchers from the Technical University of Munich. Twenty-three atoms of this iron isotope were found in the top 2 cm of crust (this layer corresponds to times from 13.4 million years ago to the present). It is estimated that the supernova must have occurred in the last 5 million years or else it would have had to happen very close to the solar system to account for so much iron-60 still being here. A supernova occurring so close would have probably caused a mass extinction, which did not happen in that time frame. The quantity of iron seems to indicate that the supernova was less than 30 parsecs away. On the other hand, the authors estimate the frequency of supernovae at a distance less than D (for reasonably small D) as around (D/10 pc)
3 per billion years, which gives a probability of only around 5% for a supernova within 30 pc in the last 5 million years. They point out that the probability may be higher because the Solar System is entering the Orion Arm of the Milky Way. In 2019, the group in Munich found interstellar dust in Antarctic surface snow not older than 20 years which they relate to the Local Interstellar Cloud. The detection of interstellar dust in Antarctica was done by the measurement of the radionuclides Fe-60 and Mn-53 by highly sensitive Accelerator mass spectrometry, where Fe-60 is again the clear signature for a recent near-Earth supernova origin.>>