JPL: When is an Asteroid Not an Asteroid?

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

JPL: When is an Asteroid Not an Asteroid?

Post by bystander » Wed Mar 30, 2011 9:22 pm

When is an Asteroid Not an Asteroid?
NASA JPL-Caltech | 2011 Mar 29
On March 29, 1807, German astronomer Heinrich Wilhelm Olbers spotted Vesta as a pinprick of light in the sky. Two hundred and four years later, as NASA's Dawn spacecraft prepares to begin orbiting this intriguing world, scientists now know how special this world is, even if there has been some debate on how to classify it.

Vesta is most commonly called an asteroid because it lies in the orbiting rubble patch known as the main asteroid belt between Mars and Jupiter. But the vast majority of objects in the main belt are lightweights, 100-kilometers-wide (about 60-miles wide) or smaller, compared with Vesta, which is about 530 kilometers (330 miles) across on average. In fact, numerous bits of Vesta ejected by collisions with other objects have been identified in the main belt.

"I don't think Vesta should be called an asteroid," said Tom McCord, a Dawn co-investigator based at the Bear Fight Institute, Winthrop, Wash. "Not only is Vesta so much larger, but it's an evolved object, unlike most things we call asteroids."

The layered structure of Vesta (core, mantle and crust) is the key trait that makes Vesta more like planets such as Earth, Venus and Mars than the other asteroids, McCord said. Like the planets, Vesta had sufficient radioactive material inside when it coalesced, releasing heat that melted rock and enabled lighter layers to float to the outside. Scientists call this process differentiation.

McCord and colleagues were the first to discover that Vesta was likely differentiated when special detectors on their telescopes in 1972 picked up the signature of basalt. That meant that the body had to have melted at one time.

Officially, Vesta is a "minor planet" -- a body that orbits the sun but is not a proper planet or comet. But there are more than 540,000 minor planets in our solar system, so the label doesn't give Vesta much distinction. Dwarf planets – which include Dawn's second destination, Ceres -- are another category, but Vesta doesn't qualify as one of those. For one thing, Vesta isn't quite large enough.

Dawn scientists prefer to think of Vesta as a protoplanet because it is a dense, layered body that orbits the sun and began in the same fashion as Mercury, Venus, Earth and Mars, but somehow never fully developed. In the swinging early history of the solar system, objects became planets by merging with other Vesta-sized objects. But Vesta never found a partner during the big dance, and the critical time passed. It may have had to do with the nearby presence of Jupiter, the neighborhood's gravitational superpower, disturbing the orbits of objects and hogging the dance partners.

Other space rocks have collided with Vesta and knocked off bits of it. Those became debris in the asteroid belt known as Vestoids, and even hundreds of meteorites that have ended up on Earth. But Vesta never collided with something of sufficient size to disrupt it, and it remained intact. As a result, Vesta is a time capsule from that earlier era.

"This gritty little protoplanet has survived bombardment in the asteroid belt for over 4.5 billion years, making its surface possibly the oldest planetary surface in the solar system," said Christopher Russell, Dawn's principal investigator, based at UCLA. "Studying Vesta will enable us to write a much better history of the solar system's turbulent youth."

Dawn's scientists and engineers have designed a master plan to investigate these special features of Vesta. When Dawn arrives at Vesta in July, the south pole will be in full sunlight, giving scientists a clear view of a huge crater at the south pole. That crater may reveal the layer cake of materials inside Vesta that will tell us how the body evolved after formation. The orbit design allows Dawn to map new terrain as the seasons progress over its 12-month visit. The spacecraft will make many measurements, including high-resolution data on surface composition, topography and texture. The spacecraft will also measure the tug of Vesta's gravity to learn more about its internal structure.

"Dawn's ion thrusters are gently carrying us toward Vesta, and the spacecraft is getting ready for its big year of exploration," said Marc Rayman, Dawn's chief engineer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "We have designed our mission to get the most out of this opportunity to reveal the exciting secrets of this uncharted, exotic world."

http://www.nasa.gov/dawn
http://dawn.jpl.nasa.gov
Vesta — Is it Really an Asteroid?
NASA Science News | Dr. Tony Phillips | 2011 Mar 29
The Dynamic Earth: How to Make a Planet
Rocky planets, moons, and asteroids all formed from the same material we now see in chondritic meteorites. Heat from impacts and radioactive decay warmed the interiors of these growing bodies. On small asteroids, the heat escaped quickly, and the bodies remained fairly homogeneous throughout. On larger asteroids and planets, however, the heat was not lost quickly enough, and the bodies began to melt. Their heavy metals coalesced and sank to form cores. Lighter, molten lava rose to the surfaces. Dense residues of solid minerals accumulated in the mantles.
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Re: JPL: When is an Asteroid Not an Asteroid?

Post by bystander » Thu Mar 31, 2011 6:54 pm

Vesta: Closing on a Protoplanet
Centauri Dreams | Paul Gilster | 2011 Mar 31
As the Dawn spacecraft continues on its way to Vesta, which it will reach in July, mission controllers have been putting it through its paces with a series of maneuvers that test the vehicle’s capabilities, a rehearsal for the high- and low-altitude mapping orbits it will operate in. It’s interesting to consider Dawn’s ion thrusters, which after more than 2.2 years of powered flight, continue to work flawlessly, now with a bit less than half of the original supply of xenon propellant (the spacecraft started with 425 kilograms of xenon). The velocity change in this period has been 5.7 kilometers per second, marking a record for on-board propulsion systems.

Dawn’s approach to Vesta is slow and spiraling, closing in on the asteroid at 0.7 kilometers per second as the orbital paths of target and spacecraft become more and more similar. In this mission report, chief engineer Marc Rayman (JPL) describes the trajectory, which is made possible by the high fuel efficiency of the ion propulsion system and the long periods of thrusting:
  • Designing the spiral trajectories is a complex and sophisticated process. It is not sufficient simply to turn the thrust on and expect to arrive at the desired destination, any more than it is sufficient to press the accelerator pedal on your car and expect to reach your goal. You have to steer carefully (and if you don’t, please don’t drive near me), and so does Dawn. As the ship revolves around Vesta in the giant asteroid’s gravitational grip, it has to change the pointing of the xenon beam constantly to stay on precisely the desired winding route to the intended science orbits.

Interestingly, Rayman says that from Dawn’s perspective, Vesta is already the brightest object in the sky other than the Sun, about as bright as Jupiter appears to us in the evening skies on Earth. I keep calling Vesta an asteroid but the differences between it and other main belt asteroids are profound. Vesta is about 530 kilometers across, compared to the much smaller objects that travel with it in their orbits between Mars and Jupiter. Moreover, Vesta has undergone differentiation, meaning its structure is layered, showing a core, mantle and crust.

It was back in 1972 that Tom McCord (now at the Bear Fight Institute, WA) and colleagues discovered the signature of basalt on Vesta, an indicator that the object had melted at some time in the past. We now believe that Vesta had enough radioactive material inside when it coalesced that rock could melt and the lighter layers could float to the outside, a process we normally think of in planetary rather than asteroid terms. That makes Vesta interesting as a ‘protoplanet,’ a dense, layered body that never fully developed by merging with other objects of the same category.

Vesta is, in other words, a window into the remote past, one we can study by looking at the hundreds of meteorites that make up some of Vesta’s debris following ancient collisions with space rocks, and now by orbiting the distant object itself. Dawn principal investigator Christopher Russell (UCLA) describes Vesta’s significance:
  • “This gritty little protoplanet has survived bombardment in the asteroid belt for over 4.5 billion years, making its surface possibly the oldest planetary surface in the solar system. Studying Vesta will enable us to write a much better history of the solar system’s turbulent youth.”

We’ll have a year at Vesta to study these matters, with Dawn arriving in July at a time when the south pole will be in full sunlight and the huge crater at the pole will be completely visible. Vesta’s evolution may be put on display if we get a good enough view of the layered materials inside the crater. In any case, Dawn will be able to give us high-resolution data on the asteroid’s surface composition, topography and texture as we probe its internal and external features. More on Vesta as protoplanet in this JPL news release.
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply