CXC: Kepler's Supernova Remnant

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

CXC: Kepler's Supernova Remnant

Post by bystander » Wed Sep 12, 2012 9:56 pm

Kepler's Supernova Remnant: Was Kepler's Supernova Unusually Powerful?
NASA | SAO | Chandra X-ray Observatory | 2012 Sep 11
Image
Credit: X-ray: NASA/CXC/SAO/D.Patnaude, Optical: DSS
In 1604, a new star appeared in the night sky that was much brighter than Jupiter and dimmed over several weeks. This event was witnessed by sky watchers including the famous astronomer Johannes Kepler. Centuries later, the debris from this exploded star is known as the Kepler supernova remnant.

Astronomers have long studied the Kepler supernova remnant and tried to determine exactly what happened when the star exploded to create it. New analysis of a long observation from NASA's Chandra X-ray Observatory is providing more clues. This analysis suggests that the supernova explosion was not only more powerful, but might have also occurred at a greater distance, than previously thought.

This image shows the Chandra data derived from more than 8 days worth of observing time. The X-rays are shown in five colors from lower to higher energies: red, yellow, green, blue, and purple. These various X-ray slices were then combined with an optical image from the Digitized Sky Survey (light yellow and blue), showing stars in the field.

Previous analysis of this Chandra image has determined that the stellar explosion that created Kepler was what astronomers call a "Type Ia" supernova. This class of supernovas occurs when a white dwarf gains mass, either by pulling gas off a companion star or merging with another white dwarf, until it becomes unstable and is destroyed by a thermonuclear explosion.

Unlike other well-known Type Ia supernovas and their remnants, Kepler's debris field is being strongly shaped by what it is running into. More specifically, most Type Ia supernova remnants are very symmetrical, but the Kepler remnant is asymmetrical with a bright arc of X-ray emission in its northern region. This indicates the expanding ball of debris from the supernova explosion is plowing into the gas and dust around the now-dead star.

The bright X-ray arc can be explained in two ways. In one model, the pre-supernova star and its companion were moving through the interstellar gas and losing mass at a significant rate via a wind, creating a bow shock wave similar to that of a boat moving through water. Another possibility is that the X-ray arc is caused by debris from the supernova expanding into an interstellar cloud of gradually increasing density.

The wind and bow shock model described above requires that the Kepler supernova remnant is located at a distance of more than 23,000 light years. In the latter alternative, the gas into which the remnant is expanding has higher density than average, and the distance of the remnant from the earth is between about 16,000 and 20,000 light years. Both alternatives give greater distances than the commonly used value of 13,000 light years.

In either model, the X-ray spectrum - that is, the amount of X-rays produced at different energies – reveals the presence of a large amount of iron, and indicates an explosion more energetic than the average Type Ia supernova. Additionally, to explain the observed X-ray spectrum in this model, a small cavity must have been cleared out around the star before it exploded. Such a cavity, which would have a diameter less than a tenth that of the remnant's current size, might have been produced by a fast, dense outflow from the surface of the white dwarf before it exploded, as predicted by some models of Type Ia supernovas.

Additionally, to explain the observed X-ray spectrum in this model, a small cavity must have been cleared out around the star before it exploded. Such a cavity, which would have a diameter less than a tenth that of the remnant, might have been produced by a fast, dense outflow from the surface of the white dwarf before it exploded, as predicted by some models of Type Ia supernovas.

Evidence for an unusually powerful Type Ia supernova has previously been observed in another remnant with Chandra and an optical telescope. These results were independently verified by subsequent observations of light from the original supernova explosion that bounced off gas clouds, a phenomenon called light echoes. This other remnant is located in the Large Magellanic Cloud, a small galaxy about 160,000 light years from Earth, making it much farther away than Kepler and therefore more difficult to study.

The Origin of Kepler's Supernova Remnant - Daniel J. Patnaude, Carles Badenes, Sangwook Park, J. Martin Laming
http://asterisk.apod.com/viewtopic.php?t=29479
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

SAO: Kepler's Supernovae

Post by bystander » Mon Sep 17, 2012 7:13 pm

Kepler's Supernovae
Smithsonian Astrophysical Observatory
Weekly Science Update | 2012 Sep 14
Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor stars, including the elements essential for making planets and life. One class of supernovae (type Ia) provide yet another benefit: they are considered to be standard distance candles, and are used by astronomers to estimate the distances to remote galaxies whose supernovae appear faint because they are far away; thus they can calibrate the cosmic distance scale.

In October of 1604, a supernova went off in our Milky Way galaxy in the direction of the constellation of Ophiuchus. It was so bright that it was visible in the daytime for three weeks. Johannes Kepler began observing it after about the first week, and he subsequently wrote a book about it. Since then, no other supernova has been seen in our galaxy, though many others have been spotted elsewhere. Kepler's supernova (as it is sometimes called) happens to be a Type Ia supernova, and because of its proximity it is an important linchpin in calibrating standard distance candles. Ironically, the precise distance to the remnant of Kepler's supernova is not very well known. It has been variously estimated over the years as between about fifteen and twenty-one thousand light-years (from the amount of gas seen between the remnant and Earth) or maybe only ten thousand light-years (from the remnant's motion with other stars in the galaxy).

CfA astronomer Daniel Patnaude and three of his colleagues have now taken an important step in determining the distance more accurately. They note that Kepler's supernova remnant has another feature: unlike most other Type 1a remnants, Kepler's shows clear signs that the explosive blastwave encountered a dense circumstellar shell. The scientists used the Chandra X-ray Observatory to observe the spectral emission from iron atoms in the hot gas, and modeled it as arising from the supernova ejecta and shocked material. They conclude from measurements of the size, strength, and details of the emission that the remnant distance is probably greater than about twenty-one thousand light-years, although additional research is needed to strengthen this conclusions. After 407 years of scientific inquiry, the new results finally help bring closure to our understanding of this dramatic spectacle.

<< Previous Science Update
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Wombat
Asternaut
Posts: 7
Joined: Tue Sep 18, 2012 5:35 am

Re: CXC: Kepler's Supernova Remnant

Post by Wombat » Tue Sep 18, 2012 5:46 am

Looks like God's lips with His tongue poking out...

Post Reply