Spitzer Measures Expansion of Universe

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Spitzer Measures Expansion of Universe

Post by bystander » Wed Oct 03, 2012 6:42 pm

NASA's Infrared Observatory Measures Expansion of Universe
NASA | JPL-Caltech | Spitzer | 2012 Oct 03
The Hubble constant is named after the astronomer Edwin P. Hubble, who astonished the world in the 1920s by confirming our universe has been expanding since it exploded into being 13.7 billion years ago. In the late 1990s, astronomers discovered the expansion is accelerating, or speeding up over time. Determining the expansion rate is critical for understanding the age and size of the universe.

Unlike NASA's Hubble Space Telescope, which views the cosmos in visible light, Spitzer took advantage of long-wavelength infrared light to make its new measurement. It improves by a factor of 3 on a similar, seminal study from the Hubble telescope and brings the uncertainty down to 3 percent, a giant leap in accuracy for cosmological measurements. The newly refined value for the Hubble constant is 74.3 plus or minus 2.1 kilometers per second per megaparsec. A megaparsec is roughly 3 million light-years.

"Spitzer is yet again doing science beyond what it was designed to do," said project scientist Michael Werner at NASA's Jet Propulsion Laboratory in Pasadena, Calif. Werner has worked on the mission since its early concept phase more than 30 years ago. "First, Spitzer surprised us with its pioneering ability to study exoplanet atmospheres," said Werner, "and now, in the mission's later years, it has become a valuable cosmology tool."

In addition, the findings were combined with published data from NASA's Wilkinson Microwave Anisotropy Probe to obtain an independent measurement of dark energy, one of the greatest mysteries of our cosmos. Dark energy is thought to be winning a battle against gravity, pulling the fabric of the universe apart. Research based on this acceleration garnered researchers the 2011 Nobel Prize in physics.

"This is a huge puzzle," said the lead author of the new study, Wendy Freedman of the Observatories of the Carnegie Institution for Science in Pasadena. "It's exciting that we were able to use Spitzer to tackle fundamental problems in cosmology: the precise rate at which the universe is expanding at the current time, as well as measuring the amount of dark energy in the universe from another angle." Freedman led the groundbreaking Hubble Space Telescope study that earlier had measured the Hubble constant.

Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington, said infrared vision, which sees through dust to provide better views of variable stars called cepheids, enabled Spitzer to improve on past measurements of the Hubble constant.

"These pulsating stars are vital rungs in what astronomers call the cosmic distance ladder: a set of objects with known distances that, when combined with the speeds at which the objects are moving away from us, reveal the expansion rate of the universe," said Wahlgren.

Cepheids are crucial to the calculations because their distances from Earth can be measured readily. In 1908, Henrietta Leavitt discovered these stars pulse at a rate directly related to their intrinsic brightness.

To visualize why this is important, imagine someone walking away from you while carrying a candle. The farther the candle traveled, the more it would dim. Its apparent brightness would reveal the distance. The same principle applies to cepheids, standard candles in our cosmos. By measuring how bright they appear on the sky, and comparing this to their known brightness as if they were close up, astronomers can calculate their distance from Earth.

Spitzer observed 10 cepheids in our own Milky Way galaxy and 80 in a nearby neighboring galaxy called the Large Magellanic Cloud. Without the cosmic dust blocking their view, the Spitzer research team was able to obtain more precise measurements of the stars' apparent brightness, and thus their distances. These data opened the way for a new and improved estimate of our universe's expansion rate.

"Just over a decade ago, using the words 'precision' and 'cosmology' in the same sentence was not possible, and the size and age of the universe was not known to better than a factor of two," said Freedman. "Now we are talking about accuracies of a few percent. It is quite extraordinary."

Expansion of Space Measurement Improved
Carnegie Institution for Science | 2012 Oct 03

Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant - Wendy L. Freedman et al
Spitzer Provides Most Precise Measurement Yet of the Universe’s Expansion
Universe Today | Nancy Atkinson | 2012 Oct 03
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
neufer
Vacationer at Tralfamadore
Posts: 18805
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Schpritzering distance

Post by neufer » Wed Oct 03, 2012 7:01 pm

http://en.wiktionary.org/wiki/spitting_distance wrote:
spitting distance: A short distance. This term usually refers to a spatial distance, but is sometimes used in an extended manner to indicate a "distance" which is other than spatial, as, for example, in:
1982, Hans Fantel, "Fusion: We're Harnessing The Power Of The H-Bomb," Popular Mechanics, September, p. 86:

"But two gigantic research projects—one at Princeton University, the other at the University of Rochester—are finally getting within spitting distance of producing useful energy from fusion reactions.">>
Art Neuendorffer

Post Reply