UTexas: Heaviest Known Black Hole in Our Cosmic Neighborhood

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

UTexas: Heaviest Known Black Hole in Our Cosmic Neighborhood

Post by bystander » Thu Jan 13, 2011 1:40 am

Astronomers 'Weigh' Heaviest Known Black Hole in Our Cosmic Neighborhood
University of Texas, Austin | McDonald Observatory | Gemini Observatory | 2011 Jan 12
Astronomers led by Karl Gebhardt of The University of Texas at Austin have measured the most massive known black hole in our cosmic neighborhood by combining data from a giant telescope in Hawai'i and a smaller telescope in Texas. The result is an ironclad mass of 6.6 billion Suns for the black hole in the giant elliptical galaxy M87. This enormous mass is the largest ever measured for a black hole using a direct technique. Given its massive size, M87 is the best candidate for future studies to actually "see" a black hole for the first time, rather than relying on indirect evidence of their existence as astronomers have for decades.

The results will be presented in a news conference today at the 217th meeting of the American Astronomical Society in Seattle, and two papers detailing the results will be published soon in The Astrophysical Journal.

Gebhardt, the Herman and Joan Suit Professor of Astrophysics at the university, led a team of researchers using the 8-meter Gemini North telescope in Hawai'i to probe the motions of stars around the black hole in the center of the massive galaxy M87.

University of Texas graduate student Jeremy Murphy has used the Harlan J. Smith Telescope at the university's McDonald Observatory in West Texas to probe the outer reaches of the galaxy — the so-called "dark halo." The dark halo is a region surrounding the galaxy filled with "dark matter," an unknown type of mass that gives off no light but is detectable by its gravitational effect on other objects.

In order to pin down the black hole's mass conclusively, Gebhardt says, one must account for all the components in the galaxy. Thus, studies of both the central and outermost regions of a galaxy are necessary to "see" the influence of the dark halo, the black hole, and the stars. But when all of these components are considered together, Gebhardt says, the results on the black hole are definitive, meeting what he calls the "gold standard" for accurately sizing up a black hole.

Gebhardt used the Near-Infrared Field Spectrograph (NIFS) on Gemini to measure the speed of the stars as they orbit the black hole. The study was improved by Gemini's use of "adaptive optics," a system which compensates, in real time, for shifts in the atmosphere that can blur details seen by telescopes on the ground.

Together with the telescope's large collecting area, the adaptive optics system allowed Gebhardt and Texas graduate student Joshua Adams to track the stars at M87's heart with 10 times greater resolution than previous studies.

"The result was only possible by combining the advantages of telescope size and spatial resolution at levels usually restricted to ground and space facilities, respectively," Adams says.

Astronomer Tod Lauer of the National Optical Astronomy Observatory, also involved in the Gemini observations, says "Our ability to obtain such a robust black hole mass for M87 bodes well for our ongoing efforts to hunt for even larger black holes in galaxies more distant than M87."

Texas graduate student Jeremy Murphy used a very different instrument to track the motions of stars at the outskirts of the galaxy. Studying the stars' movements in these distant regions gives astronomers insight into what the unseen dark matter in the halo is doing. For this work, Murphy employed an innovative instrument called VIRUS-P on McDonald Observatory's Harlan J. Smith Telescope.

Studying the distant edges of a galaxy, far from the bright center, is a tricky business, Gebhardt says.

"That has been an enormous struggle for a long time, trying to get what the dark halo is doing at the edge of the galaxy, simply because, when you look there, the stellar light is faint," he says. "This is where the VIRUS-P data comes in, because it can observe such a huge chunk of sky at once."

This means the instrument can add together the faint light from many dim stars and add them together to create one detailed observation. This kind of instrument is called an "integral field unit spectrograph," and VIRUS-P is the world's largest.

"The ability of VIRUS-P to dig deep into the outer halo of M87 and tell us how the stars are moving is impressive," Murphy says. "It has quickly become the leading instrument for this type of work."

The combined Gemini and McDonald data have allowed the team to pinpoint the mass of M87's black hole at 6.6 billion Suns. But measuring such a massive black hole is only one step toward a greater goal.

"My ultimate goal is to understand how the stars assembled themselves in a galaxy over time," Gebhardt says.

"How do you make a galaxy? These two datasets probe such an enormous range, in terms of what the mass is in the galaxy. That's the first step to answering this question. It's very hard to understand how the mass accumulates unless you know exactly what's the distribution of mass: how much is in the black hole, how much is in the stars, how much is in the dark halo."

Today's conclusions also hint at another tantalizing possibility for the future: the chance to actually "see" a black hole. "There's no direct evidence yet that black holes exist," Gebhardt says, " ... zero, absolutely zero observational evidence. To infer a black hole currently, we choose the 'none of above' option. This is basically because alternative explanations are increasingly being ruled out."

However, he says that the black hole in M87 is so massive that astronomers someday may be able to detect its "event horizon" — the edge of a black hole, beyond which nothing can escape. The event horizon of M87's black hole is about three times larger than the orbit of Pluto — large enough to swallow our solar system whole. (Good thing M87 is 50 million light-years away!)

Though the technology does not yet exist, M87's event horizon covers a patch of sky large enough to be imaged by future telescopes. Gebhardt says future astronomers could use a world-wide network of submillimeter telescopes to look for the shadow of the event horizon on a disk of gas that surrounds M87's black hole.
Neighboring black hole puts on weight
Science News | Ron Cowen | 2011 Jan 12
Galaxy M87's massive heart weighs as much as 6.6 billion suns

Astronomers have determined with high precision that the black hole at the heart of the nearby galaxy M87 weighs the equivalent of 6.6 billion suns. The finding makes the monster the most massive known in Earth’s cosmic neighborhood and one of the heaviest black holes measured so far using the orbits of stars.
Most Massive Black Hole Known Tips Scales at 6.6 Billion Suns
Space.com | Science & Astronomy | Mike Walls | 2011 Jan 12
Astronomers have now pinned down the weight of the most massive black hole known, a huge beast with the mass of 6.6 billion suns, a new study reports.

This enormous mass is the heaviest ever measured for a black holeusing a direct technique, researchers said. The supermassive black hole is about 54 million light-years from Earth. While that seems far, it's actually the closest black hole of its weight class to our planet.

Given its size, the hefty black hole — found at the heart of the elliptical galaxy M87 — is likely the best candidate for future studies to actually "see" a black hole for the first time ever.
Obese Black Hole Lurks in Our Backyard
Discovery Space News | Irene Klotz | 2011 Jan 12
Weighing in at the equivalent of 6.6 billion of our suns, this behemoth is the largest black hole in our cosmic neighborhood.
  • The black hole inside a nearby galaxy is the largest in our cosmic neighborhood.
  • The finding demonstrates a new technique for homing in on a black hole's so-called "event horizon."
  • The research also may help refine measurements for even larger black holes in more distant galaxies.
Astronomers Weigh Heaviest Black Hole Yet
Wired Science | Lisa Grossman | 2011 Jan 12
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
Beyond
500 Gigaderps
Posts: 6889
Joined: Tue Aug 04, 2009 11:09 am
Location: BEYONDER LAND

Re: UTexas: Heaviest Known Black Hole in Our Cosmic Neighbor

Post by Beyond » Thu Jan 13, 2011 2:58 am

Maybe It's just constipated :?:
To find the Truth, you must go Beyond.

User avatar
neufer
Vacationer at Tralfamadore
Posts: 18805
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Re: UTexas: Heaviest Known Black Hole in Our Cosmic Neighbor

Post by neufer » Thu Jan 13, 2011 6:57 am

http://en.wikipedia.org/wiki/Messier_87 wrote: <<At the core of [M87] is a supermassive black hole (SMBH) with an estimated (6.4 ± 0.5) × 109 times the mass of the Sun and a diameter larger than the orbit of Pluto. This is one of the highest masses known for such an object. Surrounding the black hole is a rotating disk of ionized gas that is oriented roughly perpendicular to the jet. This gas is moving at velocities of up to roughly 1,000 km/s. Gas is accreting onto the black hole at an estimated rate equal to the mass of the Sun every ten years. The black hole in M87 is displaced from the galaxy center by a distance of about 25 pc. The displacement is in the opposite direction from the one-sided jet, which may indicate that the black hole has been accelerated away from the center by the jet. Another possibility is that the displacement occurred during the merger of two SMBH.

Active elliptical galaxies of a form similar to Messier 87 are believed to form as a result of one or more mergers between smaller galaxies. There is now little dust remaining to form the diffuse nebulae where new stars are created, so the stellar population is dominated by old, population II stars that contain relatively low abundances of elements other than hydrogen and helium. The elliptical shape of this galaxy is maintained by random orbital motions of its member stars, in contrast to the more orderly rotational motions found in a spiral galaxy such as the Milky Way.

Examination of Messier 87 at far infrared wavelengths shows an excess at wavelengths longer than 25 μm [a good target for SOFIA :?: ]. Normally such an emission may be an indication of thermal emission by cool dust. However, in the case of Messier 87, the emission appears to be fully explained by synchrotron radiation from the jet. Within the galaxy, silicate grains are expected to survive for no more than 46 million years because of the X-ray emission from the core. This dust may be destroyed by the hostile environment or expelled from the galaxy. The combined mass of dust in this galaxy is no more than 70,000 times the mass of the Sun. By comparison, the Milky Way contains about a hundred million solar masses worth of dust.

Messier 87 has an abnormally large population of globular clusters. A 2006 survey out to an angular distance of 25′ from its core estimates that there are 12,000 ± 800 globular clusters in orbit around Messier 87, as compared to the Milky Way's 150-200. These clusters are similar in size distribution to the globular clusters of the Milky Way, with most having an effective radii between 1 and 6 parsecs.>>
Art Neuendorffer

Sam
Science Officer
Posts: 158
Joined: Thu Aug 19, 2010 8:39 pm

Re: UTexas: Heaviest Known Black Hole in Our Cosmic Neighbor

Post by Sam » Thu Jan 13, 2011 7:33 am

http://en.wikipedia.org/wiki/Messier_87 wrote: ...The black hole in M87 is displaced from the galaxy center by a distance of about 25 pc. The displacement is in the opposite direction from the one-sided jet, which may indicate that the black hole has been accelerated away from the center by the jet. Another possibility is that the displacement occurred during the merger of two SMBH.
This is the first I've tried to think about a black hole being acted on and accelerated by an unbalanced force. How does that work? It's not like I can go up to a black hole, push on it, and expect it to move; even for my friend watching in the spaceship a safe distance away, I would never even get to the event horizon.

So how does the black hole's jet manage to do just this? And, dare I ask, what mathematics are involved to model such an acceleration?
"No avian society ever develops space travel because it's impossible to focus on calculus when you could be outside flying." -Randall Munroe

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Re: UTexas: Heaviest Known Black Hole in Our Cosmic Neighbor

Post by bystander » Thu Jan 13, 2011 1:01 pm

Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply