Cassini Sees Seasonal Rains Transform Titan's Surface

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Cassini Sees Seasonal Rains Transform Titan's Surface

Post by bystander » Thu Mar 24, 2011 3:42 am

Cassini Sees Seasonal Rains Transform Titan's Surface
NASA JPL-Caltech | Cassini Solstice Mission | 2011 Mar 17
As spring continues to unfold at Saturn, April showers on the planet's largest moon, Titan, have brought methane rain to its equatorial deserts, as revealed in images captured by NASA’s Cassini spacecraft. This is the first time scientists have obtained current evidence of rain soaking Titan's surface at low latitudes.

Extensive rain from large cloud systems, spotted by Cassini’s cameras in late 2010, has apparently darkened the surface of the moon. The best explanation is these areas remained wet after methane rainstorms. The observations released today in the journal Science, combined with earlier results in Geophysical Research Letters last month, show the weather systems of Titan’s thick atmosphere and the changes wrought on its surface are affected by the changing seasons.

“It's amazing to be watching such familiar activity as rainstorms and seasonal changes in weather patterns on a distant, icy satellite,” said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Md., and lead author of today's publication. “These observations are helping us to understand how Titan works as a system, as well as similar processes on our own planet.”

The Saturn system experienced equinox, when the sun lies directly over a planet's equator and seasons change, in August 2009. (A full Saturn “year” is almost 30 Earth years.) Years of Cassini observations suggest Titan's global atmospheric circulation pattern responds to the changes in solar illumination, influenced by the atmosphere and the surface, as detailed in the Geophysical Research Letters paper. Cassini found the surface temperature responds more rapidly to sunlight changes than does the thick atmosphere. The changing circulation pattern produced clouds in Titan's equatorial region.

Clouds on Titan are formed of methane as part of an Earth-like cycle that uses methane instead of water. On Titan, methane fills lakes on the surface, saturates clouds in the atmosphere, and falls as rain. Though there is evidence that liquids have flowed on the surface at Titan's equator in the past, liquid hydrocarbons, such as methane and ethane, had only been observed on the surface in lakes at polar latitudes. The vast expanses of dunes that dominate Titan's equatorial regions require a predominantly arid climate. Scientists suspected that clouds might appear at Titan's equatorial latitudes as spring in the northern hemisphere progressed. But they were not sure if dry channels previously observed were cut by seasonal rains or remained from an earlier, wetter climate.

An arrow-shaped storm appeared in the equatorial regions on Sept. 27, 2010 -- the equivalent of early April in Titan's “year” -- and a broad band of clouds appeared the next month. As described in the Science paper, over the next few months, Cassini's imaging science subsystem captured short-lived surface changes visible in images of Titan's surface. A 193,000-square-mile (500,000-square-kilometer) region along the southern boundary of Titan’s Belet dune field, as well as smaller areas nearby, had become darker. Scientists compared the imaging data to data obtained by other instruments and ruled out other possible causes for surface changes. They concluded this change in brightness is most likely the result of surface wetting by methane rain.

These observations suggest that recent weather on Titan is similar to that over Earth’s tropics. In tropical regions, Earth receives its most direct sunlight, creating a band of rising motion and rain clouds that encircle the planet.

“These outbreaks may be the Titan equivalent of what creates Earth's tropical rainforest climates, even though the delayed reaction to the change of seasons and the apparently sudden shift is more reminiscent of Earth's behavior over the tropical oceans than over tropical land areas,” said Tony Del Genio of NASA's Goddard Institute for Space Studies, New York, a co-author and a member of the Cassini imaging team.

On Earth, the tropical bands of rain clouds shift slightly with the seasons but are present within the tropics year-round. On Titan, such extensive bands of clouds may only be prevalent in the tropics near the equinoxes and move to much higher latitudes as the planet approaches the solstices. The imaging team intends to watch whether Titan evolves in this fashion as the seasons progress from spring toward northern summer.

“It is patently clear that there is so much more to learn from Cassini about seasonal forcing of a complex surface-atmosphere system like Titan’s and, in turn, how it is similar to, or differs from, the Earth’s,” said Carolyn Porco, Cassini imaging team lead at the Space Science Institute, Boulder, Colo. “We are eager to see what the rest of Cassini’s Solstice Mission will bring.”

Titan Storms -- Image Gallery
Rapid and Extensive Surface Changes Near Titan’s Equator: Evidence of April Showers - EP Turtle et al

Rain on Titan

"I originally painted this, in acrylics, early in 2010, having seen reports of methane rain on the Cassini website. I knew that radio bursts had been detected too, so wondered whether there actually could be lightning and asked Carolyn Porco, who said it hadn't been seen but that didn't mean there couldn't be any. Then last week I saw the report of rainstorms on Titan, so sent this image! I had to use artist's license to show Saturn through a brief gap in the clouds."

David A. Hardy © 2011
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
owlice
Guardian of the Codes
Posts: 8406
Joined: Wed Aug 04, 2004 4:18 pm
Location: Washington, DC

Re: Cassini Sees Seasonal Rains Transform Titan's Surface

Post by owlice » Thu Mar 24, 2011 9:23 am

A closed mouth gathers no foot.

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

UCLA: What caused giant arrow-shaped cloud on Titan?

Post by bystander » Tue Aug 16, 2011 5:26 am

What caused a giant arrow-shaped cloud on Saturn's moon Titan?
University of California, Los Angeles | Stuart Wolpert | 2011 Aug 15
Why does Titan, Saturn's largest moon, have what looks like an enormous white arrow about the size of Texas on its surface?

A research group led by Jonathan L. Mitchell, UCLA assistant professor of earth and space sciences and of atmospheric and oceanic sciences, has answered this question by using a global circulation model of Titan to demonstrate how planetary-scale atmospheric waves affect the moon's weather patterns, leading to a "stenciling" effect that results in sharp and sometimes surprising cloud shapes.

"These atmospheric waves are somewhat like the natural, resonant vibration of a wine glass," Mitchell said. "Individual clouds might 'ring the bell,' so to speak, and once the ringing starts, the clouds have to respond to that vibration."

The fascinating clouds, including arrow-shaped ones, that result from the atmospheric waves can cause intense precipitation — sometimes more than 20 times Titan's average seasonal rainfall — and could be essential in shaping Titan's surface by erosion.

The research was published Aug. 14 in the online edition of the journal Nature Geoscience and will be published in an upcoming print edition.

Mitchell and a colleague have described Titan's climate as "all-tropics" — the entire planet experiences the types of weather phenomena that on Earth are confined to the equatorial region.

"Our new results demonstrate the power of this analogy, not only for general features of Titan's climate but also for individual storms," Mitchell said. "In future work, we plan to extend our analysis to other Titan observations and make predictions of what clouds might be observed during the upcoming season.

"Titan's all-tropics climate gives us the opportunity to study tropical weather in a simpler setting than on Earth," he added. "Our hope is that this may help us understand Earth's weather in a changing climate."

NASA's Cassini Spacecraft has been in orbit around Saturn since late 2004 and has revolutionized our understanding of Titan, which is larger in volume than the planet Mercury and the second largest moon in the solar system after Jupiter's Ganymede. Titan has a thick nitrogen atmosphere and experiences rain made of natural methane gas.

"Titan is like Earth's strange sibling — the only other rocky body in the solar system that currently experiences rain," Mitchell said.

Titan is an alien world, but strangely not so different from Earth. Like Earth, the main component of its atmosphere is molecular nitrogen. Water, too, is abundant on Titan, although it is all frozen in the crust at very low temperatures. Methane is thermodynamically active in the lower atmosphere, and much like water vapor on Earth, Titan's methane forms clouds, precipitates and is resupplied from surface sources, Mitchell said. The runoff then weathers the cold surface of Titan, creating what appears to be river patterns.

Scientists think that Earth, shortly after it formed an atmosphere, had large amounts of methane and very little oxygen. Methane provided an important greenhouse warming that probably prevented Earth from staying perpetually in a completely frozen state that otherwise would have resulted from the weaker sunlight from the very young sun, Mitchell said.

"Therefore, by studying Titan's modern climate, we may gain new insights about the way the early Earth's climate was," Mitchell said.

He and his research group have developed an atmospheric model to study the climate and cloud patterns of Titan.

Locally enhanced precipitation organized by planetary-scale waves on Titan - JL Mitchell et al
Mystery of Saturn Moon's Bizarre Cloud Solved
Space.com | Charles Q. Choi | 2011 Aug 16

Titan’s Giant Cloud Explained
Universe Today | Ray Sanders | 2011 Aug 17
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
neufer
Vacationer at Tralfamadore
Posts: 18805
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Re: UCLA: What caused giant arrow-shaped cloud on Titan?

Post by neufer » Tue Aug 16, 2011 12:34 pm

Mitchell and a colleague have described Titan's climate as "all-tropics" — the entire planet experiences the types of weather phenomena that on Earth are confined to the equatorial region.

"Our new results demonstrate the power of this analogy, not only for general features of Titan's climate but also for individual storms," Mitchell said. "In future work, we plan to extend our analysis to other Titan observations and make predictions of what clouds might be observed during the upcoming season.

"Titan's all-tropics climate gives us the opportunity to study tropical weather in a simpler setting than on Earth," he added. "Our hope is that this may help us understand Earth's weather in a changing climate." "Titan is like Earth's strange sibling — the only other rocky body in the solar system that currently experiences rain," Mitchell said.
Art Neuendorffer

Post Reply