Neutrino mass

The cosmos at our fingertips.
Post Reply
User avatar
neufer
Vacationer at Tralfamadore
Posts: 18805
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Neutrino mass

Post by neufer » Tue Feb 15, 2022 3:12 am

https://en.wikipedia.org/wiki/Neutrino#Mass wrote:
Click to play embedded YouTube video.

<<The Standard Model of particle physics assumed that neutrinos are massless. The experimentally established phenomenon of neutrino oscillation, which mixes neutrino flavour states with neutrino mass states (analogously to CKM mixing), requires neutrinos to have nonzero masses.

The strongest upper limit on the masses of neutrinos comes from cosmology: the Big Bang model predicts that there is a fixed ratio between the number of neutrinos and the number of photons in the cosmic microwave background. If the total energy of all three types of neutrinos exceeded an average of 50 eV per neutrino, there would be so much mass in the universe that it would collapse. This limit can be circumvented by assuming that the neutrino is unstable, but there are limits within the Standard Model that make this difficult. A much more stringent constraint comes from a careful analysis of cosmological data, such as the cosmic microwave background radiation, galaxy surveys, and the Lyman-alpha forest. These indicate that the summed masses of the three neutrinos must be less than 0.3 eV.

In 1998, research results at the Super-Kamiokande neutrino detector determined that neutrinos can oscillate from one flavor to another, which requires that they must have a nonzero mass. While this shows that neutrinos have mass, the absolute neutrino mass scale is still not known.

In 2009, lensing data of a galaxy cluster were analyzed to predict a neutrino mass of about 1.5 eV. This surprisingly high value requires that the three neutrino masses be nearly equal, with neutrino oscillations on the order of milli-electron-volts. In 2016 this was updated to a mass of 1.85 eV. It predicts 3 sterile neutrinos of the same mass, stems with the Planck dark matter fraction and the non-observation of neutrinoless double beta decay. The masses lie below the Mainz-Troitsk upper bound of 2.2 eV for the electron antineutrino. The latter is being tested since June 2018 in the KATRIN experiment, that searches for a mass between 0.2 eV and 2 eV.

On 31 May 2010, OPERA researchers observed the first tau neutrino candidate event in a muon neutrino beam, the first time this transformation in neutrinos had been observed, providing further evidence that they have mass.

In July 2010, the 3-D MegaZ DR7 galaxy survey reported that they had measured a limit of the combined mass of the three neutrino varieties to be less than 0.28 eV. A tighter upper bound yet for this sum of masses, 0.23 eV, was reported in March 2013 by the Planck collaboration, whereas a February 2014 result estimates the sum as 0.320 ± 0.081 eV based on discrepancies between the cosmological consequences implied by Planck's detailed measurements of the cosmic microwave background and predictions arising from observing other phenomena, combined with the assumption that neutrinos are responsible for the observed weaker gravitational lensing than would be expected from massless neutrinos.

If the neutrino is a Majorana particle, the mass may be calculated by finding the half-life of neutrinoless double-beta decay of certain nuclei. The current lowest upper limit on the Majorana mass of the neutrino has been set by KamLAND-Zen: 0.060–0.161 eV.>>
Art Neuendorffer

Post Reply