ESO: Sweet Result from ALMA (IRAS 16293-2422)

Find out the latest thinking about our universe.
Post Reply
User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

ESO: Sweet Result from ALMA (IRAS 16293-2422)

Post by bystander » Wed Aug 29, 2012 5:19 pm

Sweet Result from ALMA
European Southern Observatory | 2012 Aug 29
Building blocks of life found around young star

Click to play embedded YouTube video.
A team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) has spotted sugar molecules in the gas surrounding a young Sun-like star. This is the first time sugar been found in space around such a star, and the discovery shows that the building blocks of life are in the right place, at the right time, to be included in planets forming around the star.

The astronomers found molecules of glycolaldehyde — a simple form of sugar [1] — in the gas surrounding a young binary star, with similar mass to the Sun, called IRAS 16293-2422. Glycolaldehyde has been seen in interstellar space before [2], but this is the first time it has been found so near to a Sun-like star, at distances comparable to the distance of Uranus from the Sun in the Solar System. This discovery shows that some of the chemical compounds needed for life existed in this system at the time of planet formation [3].

“In the disc of gas and dust surrounding this newly formed star, we found glycolaldehyde, which is a simple form of sugar, not much different to the sugar we put in coffee,” explains Jes Jørgensen (Niels Bohr Institute, Denmark), the lead author of the paper. “This molecule is one of the ingredients in the formation of RNA, which — like DNA, to which it is related — is one of the building blocks of life.”

The high sensitivity of ALMA — even at the technically challenging shortest wavelengths at which it operates — was critical for these observations, which were made with a partial array of antennas during the observatory’s Science Verification phase [4].

“What it is really exciting about our findings is that the ALMA observations reveal that the sugar molecules are falling in towards one of the stars of the system,” says team member Cécile Favre (Aarhus University, Denmark). “The sugar molecules are not only in the right place to find their way onto a planet, but they are also going in the right direction.”

The gas and dust clouds that collapse to form new stars are extremely cold [5] and many gases solidify as ice on the particles of dust where they then bond together and form more complex molecules. But once a star has been formed in the middle of a rotating cloud of gas and dust, it heats the inner parts of the cloud to around room temperature, evaporating the chemically complex molecules, and forming gases that emit their characteristic radiation as radio waves that can be mapped using powerful radio telescopes such as ALMA.

IRAS 16293-2422 is located around 400 light-years away, comparatively close to Earth, which makes it an excellent target for astronomers studying the molecules and chemistry around young stars. By harnessing the power of a new generation of telescopes such as ALMA, astronomers now have the opportunity to study fine details within the gas and dust clouds that are forming planetary systems.

"A big question is: how complex can these molecules become before they are incorporated into new planets? This could tell us something about how life might arise elsewhere, and ALMA observations are going to be vital to unravel this mystery,” concludes Jes Jørgensen.

The work is described in a paper to appear in the journal Astrophysical Journal Letters.
  1. Notes

    [*] Sugar is the common name for a range of small carbohydrates (molecules containing carbon, hydrogen and oxygen, typically with a hydrogen:oxygen atomic ratio of 2:1, as in water). Glycolaldehyde has the chemical formula C2H4O2. The sugar commonly used in food and drink is sucrose, which is a larger molecule than glycolaldehyde, and another example of this set of compounds.

    [*] Glycolaldehyde has been detected in two places in space so far — first towards the Galactic Centre cloud Sgr B2, using the National Science Foundation's (NSF) 12 Meter Telescope at Kitt Peak (USA) in 2000, and with the NSF's Robert C. Byrd Green Bank Telescope (also USA) in 2004, and in the high-mass hot molecular core G31.41+0.31 using the IRAM Plateau de Bure Interferometer (France) in 2008.

    [*] Accurate laboratory measurements of the characteristic wavelengths of radio waves emitted by glycolaldehyde were critical for the team’s identification of the molecule in space. In addition to the glycolaldehyde, IRAS 16293-2422 is also known to harbour a number of other complex organic molecules, including ethylene glycol, methyl formate and ethanol.

    [*] Early scientific observations with a partial array of antennas began in 2011 (see eso1137). Both before and after this, a range of Science Verification observations have been performed to demonstrate that ALMA is capable of producing data of the required quality, and the data produced have been made publicly available. The results described here use some of these Science Verification data. Construction of ALMA will be completed in 2013, when 66 high-precision antennas will be fully operational.

    [*] They are usually around 10 degrees above absolute zero: about –263 degrees Celsius.

Sweet building blocks of life found around young star
University of Copenhagen | 2012 Aug 29

Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA - Jes K. Jorgensen
http://asterisk.apod.com/viewtopic.php?t=29414#p182519
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
neufer
Vacationer at Tralfamadore
Posts: 18805
Joined: Mon Jan 21, 2008 1:57 pm
Location: Alexandria, Virginia

Re: ESO: Sweet Result from ALMA (IRAS 16293-2422)

Post by neufer » Wed Aug 29, 2012 9:48 pm

Well, now, at least, we know where little girls come from.
Art Neuendorffer

User avatar
Beyond
500 Gigaderps
Posts: 6889
Joined: Tue Aug 04, 2009 11:09 am
Location: BEYONDER LAND

Re: ESO: Sweet Result from ALMA (IRAS 16293-2422)

Post by Beyond » Wed Aug 29, 2012 11:21 pm

neufer wrote:Well, now, at least, we know where little girls come from.
Whoa... hold on a minute there neufer. Doesn't there also have be spice and puppy dog tails in the area also :?: :?: I don't think I've heard those ingredients mentioned as of yet.
To find the Truth, you must go Beyond.

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

Re: ESO: Sweet Result from ALMA (IRAS 16293-2422)

Post by bystander » Wed Aug 29, 2012 11:46 pm

Beyond wrote:Whoa... hold on a minute there neufer. Doesn't there also have be spice and puppy dog tails in the area also :?: :?: I don't think I've heard those ingredients mentioned as of yet.
Nah, puppy dog tails are for little boys. Spice comes from Arrakis.
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

User avatar
Beyond
500 Gigaderps
Posts: 6889
Joined: Tue Aug 04, 2009 11:09 am
Location: BEYONDER LAND

Re: ESO: Sweet Result from ALMA (IRAS 16293-2422)

Post by Beyond » Thu Aug 30, 2012 2:04 am

ha-ha, it has been a v--e--r--y l--o--n--g time since i've heard it. Now... where's the place that 'the everything nice' comes from :?: :?:
To find the Truth, you must go Beyond.

User avatar
bystander
Apathetic Retiree
Posts: 21577
Joined: Mon Aug 28, 2006 2:06 pm
Location: Oklahoma

SAO: How Sweet It Is

Post by bystander » Fri Sep 07, 2012 4:43 pm

How Sweet It Is
Smithsonian Astrophysical Observatory
Weekly Science Update | 2012 Sep 07
Astronomers have detected about 180 molecules in interstellar space, from simple ones like carbon monoxide (one atom of carbon and one of oxygen) to complex species like buckminsterfullerene (sixty atoms of carbon) or anthracene (fourteen atoms of carbon and ten of hydrogen). These chemicals are found in a wide variety of environments in the galaxy, and in principle can provide the backbone for the subsequent production of the molecules essential to life.

The search for molecules associated with life however, for example simple sugars, has been less successful. The simplest sugar is glycolaldehyde (HCOCH2OH). It has been spotted in only two extreme places so far: a massive dense molecular cloud near the galactic center, and a dense core of gas and dust that is forming massive stars. It has not even been found in solar system comets, which are thought to contain samples of material dating from the early solar nebula.

A new paper in The Astrophysical Journal Letters reports discovering glycolaldehyde in the material around a newly developing star of approximately solar mass. CfA astronomer Tyler Bourke and five colleagues used the new Atacama Large Millimeter Array (ALMA) facility in Chile to observe the protostar IRAS16293-2422, located about 400 light-years away. They find thirteen different lines characteristic of this molecule, and their analysis finds that the gas is warm (about 200-300 kelvin) and probably part of a large system of material flowing in towards the star as it grows and develops a system of planets. Although the exact mechanism(s) that produce the glycolaldehyde are uncertain, the new results help confirm that molecules associated with life exist in normal environments around young, solar-mass stars. The team notes that the new facility will enable astronomers to study this sugar in other places and begin to tell a more complete story of how the rich chemistry found on Earth developed.

Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA - Jes K. Jorgensen et al
<< Previous Science Update
Know the quiet place within your heart and touch the rainbow of possibility; be
alive to the gentle breeze of communication, and please stop being such a jerk.
— Garrison Keillor

Post Reply